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Abstract

The development and operation of future net zero energy systems is subject to un-
certainties from a wide and diverse range of sources. Accounting for these uncer-
tainties in energy system models, and being able to understand and quantify their
impact on the behaviour of energy systems in a transparent and justifiable man-
ner, is critically important to enabling the identification of system designs that will
perform well in expectation in the uncertain future. However, consensus has yet
to be achieved in the literature as to which uncertainty modelling techniques will
be able to provide the rigorous uncertainty analysis of large-scale energy system
models required to properly support energy system decarbonisation policy mak-
ing. This work studies the suitability of Value of Information Analysis, a Bayesian
Decision Analysis based framework for uncertainty quantification, for the study
of the impact of uncertainties in energy systems problems. It is found that the
framework has significant potential in this regard, and that further research ef-
fort is required to expand its applications in the energy systems field. Potentially
novel extensions and genearlisations to the framework are proposed, including a
reinterpretation of the Value of Information Analysis framework as a sub-field of
Stochastic Optimal Control involving the comparison of the expected performance
of different control schemes, which enables the study of general control scheme
architectures in a Value of Information context, and a demonstration of the equiv-
alence of Monte Carlo approximations of expected utilities to a statistical form of
classical sensitivity analysis. The Stochastic Optimal Control extension is applied
to the case of Linear Programming based decision problems, and is shown to be
able to provide a variety of insights into the effects of uncertainty on state-of-the-
art linear Energy System Optimisation Models, most notably the quantification of
the expected performance reduction arising due to the presence of uncertainty.
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1. Introduction
Transitioning to net zero carbon energy systems is a critical step in achieving the ambitious
carbon emissions reductions targets to which most European nations are committed [2]. This
transition will require the integration of large proportions of low-carbon renewable power gen-
eration into the supply asset mix of existing energy systems. However, adopting renewable
power generation into energy systems poses a number of significant Engineering challenges,
which arise from the physical nature of the generation technologies and their dependence on
met-ocean conditions. Of key importance is the non-controllable, variable nature of power
generation from prominent renewable technologies such as wind and solar, which further
exhibit limited predictability outside of near-term forecasts and annual aggregates [3]. This
intermittency of energy supply which comes with integrating high proportions of renewable
generation introduces additional uncertainty into the operation of energy systems, whichmust
be managed and mitigated to ensure that energy network stability and security of energy
supply can be maintained in future net zero energy systems, which cannot rely on dispatch-
able fossil fuel power generation. Managing the spatio-temporal variability of future energy
generation asset portfolios will require the development of additional energy transmission
infrastructure, as well as supporting auxiliary energy infrastructure such as energy storage &
arbitrage, frequency response, real-time energy telemetry systems, and novel energy man-
agement strategies, such as demand-side response, real-time pricing, grid interconnection,
and sector-coupling [4–8]. Thus, transitioning to net zero energy generation requires sub-
stantial adaptation and development of existing energy system infrastructure to facilitate the
integration of high proportions of renewable generation, and so imposes a significant addi-
tional cost to the provision of low-carbon energy to the consumer.

1.1 Energy Systems Modelling

Modelling future energy systems allows the nature of their behaviour and operation to be stud-
ied and understood, and consequently the identification of low-cost system designs [9–15].
Energy systems modelling can therefore be used to guide infrastructure development pol-
icy decisions to minimise the cost of the transition to net zero carbon energy to society, and
ensure the resilience of energy infrastructure to the uncertainties imposed by variable renew-
able generation.

Due to the economic significance of maintaining a secure and cost efficient energy supply
system, and more recently its importance in enabling decarbonisation, energy systems mod-
elling has received substantial research attention [16–33]. A central question in the study of
energy systems is that of determining minimal cost asset investment strategies to fulfill future
energy demand, possibly subject to operational constraints (such as system stability, out-
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1 Introduction 1.1 Energy Systems Modelling

age risk or net carbon emissions), which are termed ‘capacity expansion planning problems’.
Early models were put forward and discussed in the literature in the 60s & 70s [16–19], how-
ever modern advancements in computational capabilities and historic weather measurement
data availability [34–41] led to further developments in the field and the expansion of the anal-
ysis capabilities of Energy System Models (ESMs). Most significantly, recent contributions
to the literature developed high spatio-temporal resolution models of national scale energy
systems, for which minimal cost system design solutions could be tractably obtained whilst
analysing hourly-resolved operation over durations of the order 10 years [20–22], enabling
the accurate long-term planning of future decarbonised energy systems.

Over the history of the literature an extremely large number of models have been pro-
posed, covering a wide range of modelling approaches and mathematical formulations, in-
cluding Linear Programs [18, 20], Stochastic Programs [42, 43], Mixed Integer Linear Pro-
grams [44–46], and general Mixed Integer Non-Linear Programs [47–49]. As discussed
in [33], the saturation of models in the literature leads to significant issues for policy mak-
ers relating to model selection and the lack of comparability of model results. This work
focuses on Linear Programming (LP) based ESMs, such as [20–22], as due to their compu-
tational efficiency advantages over other model types and the resulting ability to handle high
spatio-temporal resolution models, they are most suitable for the study of long-term asset
development planning problems for large-scale future energy systems. Additionally, a recent
study demonstrated that linearised models can provide sufficiently accurate representations
of non-linear network effects at low computational cost [50].

The operating conditions of future energy systems, which strongly influence their optimal
designs, are subject to a large and diverse set of underlying uncertainties, including energy
demand, fuel costs, and network availability. Further, when looking towards the design of
decarbonised energy systems and the integration of renewable generation technologies the
set of underlying uncertainties is expanded significantly, with the addition of uncertainties in
regulatory & policy frameworks, CO2e emissions prices, generation costs from renewable
sources, auxiliary technology availability and performance, and temporal power generation
from renewable sources, amongst others [51–57].

A large number of methods for quantifying the impact of these underlying uncertainties
on the system design solutions identified by ESMs have been proposed in the literature, as
well as techniques for accounting for underlying uncertainties within the models, to allow for
system designs which perform well under such uncertainty to be identified [31,58]. However,
whilst the literature recognises the importance of addressing uncertainty in ESMs2 [27, 31],
it is yet to reach consensus on which methods adequately capture the impact of the criti-

2 Reference [27] comments that whilst "[the i]mportance of uncertainty [is] widely acknowledged, . . . only a
minority of papers use a formal uncertainty analysis methodology". "Without adequately addressing uncertain-
ties, the model insights may be limited, lack robustness, and may mislead decision makers".
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1 Introduction 1.3 Thesis Stratagem

cal underlying uncertainties on the operation and optimal design of energy systems. The
development of a rigorous, statistical method for quantifying the impact of uncertainties on
system performance, and incorporating it into modelling techniques to achieve performant,
statistically informed system designs, remains an open area of research.

1.2 Value of Information Analysis

Value of Information Analysis (VoIA) is a Bayesian method for quantifying the expected value
of uncertainty reduction arising from the gathering of data in the context of a defined decision
problem [59, 60], which was originally proposed by Raiffa [61] in 1968. It has subsequently
found applications across a range of Engineering disciplines, including structural health mon-
itoring in Infrastructure Engineering [59] and seismic surveys in Oil & Gas Engineering [62],
as well as in many other fields of study such as Agriculture, Environmental Science, Eco-
nomics, and Medicine [63, 64]. However, at present there have been a limited number of
applications of this Bayesian Decision Analysis technique to energy systems problems.

1.3 Thesis Stratagem

This work seeks to explore the potential applications of VoIA to energy systems problems,
and the ways in which the methodology can contribute to the understanding of the behaviour
of future, net zero energy systems under uncertain development and operational conditions.
Further, it investigates how the VoIA framework can be generalised and extended to allow for
the study of more complex systems, and demonstrates the ability of such a generalisation
to provide a transparent and justifiable method for quantifying the impact of uncertainties on
the performance of Linear Programming based energy system optimisation models.

The presented work is structured as follows. A review of the literatures concerning tech-
niques for accounting for the impact of uncertainties in ESMs, and the application of VoIA
to ESMs, including a critique of existing VoIA applications, is performed in Section 2. Sec-
tion 3 provides an overview of the theory of classical VoIA, before presenting an extension
and generalisation of the existing framework. The extended VoIA framework is then applied
to Linear Programming based decision problems in Section 4, in which the abilities of this
application to provide a range of insights on, and measures of, the impact of uncertainties
on the performance of current state-of-the-art LP-based Energy System Optimisation Models
(ESOMs) are demonstrated. A numerical example of which is presented in Section 5. Finally,
Section 6 summarises the findings and proposes a series of promising research directions
for future works.
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2 Literature Review 2.1 Uncertainty in ESMs

2. Literature Review

2.1 Energy Systems Modelling under Uncertainty

The goal of energy systemsmodelling is to gain insight into the nature and behaviour of future
energy systems, and from this understanding, determine how to optimally design, adapt, and
operate both the networks of physical assets comprising the energy system and the surround-
ing markets and regulatory structures that allow it to interact with its users, subject to some
determined operational objectives and constraints. The performance of system designs and
operational strategies, which themselves influence the performance of system designs as
the operational capabilities of a design contribute to its overall merit, are dependent on the
characteristics of the physical assets implemented and their interactions, the behaviour of
interfacing markets & users, and the operational conditions to which the system is subject.
All of these aspects contain significant uncertainties, which are further compounded by the
predictive nature of the task of designing future systems. As a result, the modelling of future
energy systems, and any derived results, are subject to a wide and diverse set of sources of
uncertainty. These uncertainties must be addressed and accounted for by ESMs so that de-
cision makers can have confidence that the guidance they provide will lead to future energy
systems that perform well under the true observed state of the world when it occurs, i.e. that
the system designs are ‘performance robust’3 to the underlying uncertainties.

2.1.i) Sources of Uncertainty in Energy Systems

When considering the application of ESMs to the design of decarbonised energy systems,
and the additional challenges and uncertainties introduced by the integration of variable re-
newable sources into the generation mix, some of the key sources of uncertainty identified
in the literature are:

• renewable power generation derived from stochastic weather conditions, both volumes
and spatial & temporal patterns [51,65]

• climatic conditions that drive weather patterns [52,53]

• cost of renewable generation technologies [54]

• costs & availability of supporting auxiliary infrastructure technology, such as energy
storage and transmission capacity [55]

• energy demands, both volumes and spatial & temporal patterns [56,65]

• consumer & market response behaviours

3 A system design is said to be ‘performance robust’ if it provides a ‘good’ level of performance, in terms
of design objective, over the probability space defined by the underlying uncertainties within the system. Its
precise mathematical definition is dependent on both the system context and objectives of the decision maker.
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2 Literature Review 2.1 Uncertainty in ESMs

• climate & energy policies and associated regulatory systems, such as emissions stan-
dards [66,67]

• cost of carbon emissions [68]

• cost of (carbon intensive) dispatchable power generation [68]

Note that this work considers only the parametric uncertainty associated with ESMs, the
uncertainties in the values of the model parameters, and not structural or model uncertainty
[33], hence does not assume any particular model structure.

2.1.ii) Methods for Addressing Uncertainties

The literature proposes a variety of different methods for accounting for the impact of these
underlying uncertainties on the results produced by ESMs, and for incorporating measures of
uncertainty into the system design process to produce solutions that are ‘performance robust’
to it. These methods can be broadly categorised into two types of approaches based on
whether the underlying uncertainties are represented explicitly within the model, or whether
the uncertainties are treated externally to the model and their impact studied through the
evaluation of the model at test or sample points from the probabilistic input space, which
will be called ‘explicit representation methods’ and ‘evaluation based methods’ respectively.
Explicit representation methods tend to produce a single ‘statistically’ informed system design
solution, and due to the incorporation of probabilistic representations into the model that must
be either evaluated or optimised over, tend to have much greater computational costs per
evaluation compared to their deterministic equivalents. Evaluation based methods on the
other hand are used to determine the output space of system design solutions resulting from
the probabilistic space of input parameters for the model being evaluated. As a result these
methods are used to produce measures of the impact of underlying uncertainties on either
the performance of given system designs, or the characteristics of system design solutions
produced by the model being investigated. Due to their external treatment of stochasticity,
and resulting simplicity, they can be applied to the study of more complex ESMs, and are
fundamentally suited to compute parallelisation.

A literature review identified the application of the following methods for handling uncer-
tainty to ESMs:

• Evaluation based methods

– scenario analysis & possibilistic methods [9,30,58,69]
∼ probabilistic methods (scenario trees, Monte Carlo methods) [27,31,58]
∼ hybrid possibilistic-probabilistic techniques (mixed scenarios & samples) [58]
– global sensitivity analysis & interval analysis [27,30,31,58,70]
– Methods for Generating Alternatives (MGA) [27,30,31,71–73]

6



2 Literature Review 2.1 Uncertainty in ESMs

• Explicit representation methods

∼ Stochastic Optimisation [27,30,31,42,43]
∼ chance/risk constrained optimisation [74–77]
– robust optimisation [27,58]
– fuzzy optimisation [58]
– information gap decision theory [58]
∼ Value of Information Analysis (VoIA) [42,43,66–68,78–91]

Reviews [27] & [30] provide a thorough overview of many of these techniques.

These methods can be further categorised into statistical methods (denoted with ∼ in list
above) and non-statistical methods, depending on whether the representation of uncertainty
in the model exploits the full statistical distributions of the uncertain parameters, or uses some
non-statistical proxy of parametric uncertainty such as a parameter range.

Whilst VoIA is typically a statistical explicit representation method, which also contains a
sampling and evaluation type step, it can be generalised for use as a statistical evaluation
based method. This extension of standard VoIA is discussed in Section 3.4.ii).

Statistical methods are greatly preferable over non-statistical methods for design analysis,
as they provide decision makers with information on not only what outcomes can occur, but
which outcomes are likely to occur, either in terms of expectations or full probability distribu-
tions. However, these derived output distributions are predicated on the chosen input param-
eter distributions. A key criticism of statistical methods, including Bayesian analysis, raised in
the literature is that the prior and likelihood distributions for the models must be chosen during
the definition of the model. Hence, statistical methods suffer from similar problems of lack of
robust justification and opaque ‘reasonable choices’, to non-statistical methods [92]. Thus it
is argued whether statistical methods really improve the quality of information provided in the
modelling, or whether they merely increase the complexity of models and their results without
improving insights or accuracy. However, in many instances parameter distributions can be
learned from data [60,62,68,93], such as historic measurements or simulation results, which
addresses such criticisms and should be practiced wherever possible.

2.1.iii) Usage of Methods in Existing Literature

Due to their simplicity and interpretability, scenario analysis and global sensitivity analysis
are the most common uncertainty assessment methods applied to ESMs in the literature
[9–11, 13, 69, 94]. However recently more advanced techniques have experienced greater
research attention, in particular MGA [71–73] and Stochastic Optimisation [27,30,31,42,43,
95]. Both methods seek to identify system design solutions that are ‘performance robust’ to
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2 Literature Review 2.2 VoIA for ESMs

uncertainties, but whilst Stochastic Optimisation explicitly models parametric uncertainty in
its optimisation formulation and optimises over expected performance, MGA seeks to explore
the space of near-optimally performant system designs to identify solutions that are robust to
model uncertainties, and so is less relevant to the study of energy system uncertainty in this
work.

Of the uncertainty assessment methods identified in the literature review, Stochastic Op-
timisation provides the most complete statistical representation of the underlying parameter
uncertainties in energy system models, though correspondingly has the greatest modelling
and computational complexity. It is also found to be the key model type to which VoIA is
applied in the literature for this reason. Examples of such applications are discussed in Sec-
tion 2.2.

The number and diversity of methods for investigating the impact of uncertainties on ESMs
applied in the literature demonstrates that a consensus has yet to be reach on which method-
ologies are able to robustly quantify this impact of uncertainty. Hence, the development of a
rigorous analysis methodology which provides a complete statistical treatment of uncertainty
remains an open research question. Due to the deficiencies of existing methods, the litera-
ture review did not identify any that were capable of addressing the inherent stochasticity of
variable renewable generation, and thus the impact of this substantial uncertainty in future
low-carbon energy systems is yet to be studied. Understanding this impact is critical to the
effective transition to net zero energy systems, and so highly motivates further study in this
research area.

2.2 Value of Information Analysis in Energy Systems Modelling

2.2.i) Discussion of Previous Applications

Since the development of both Energy Systems Modelling [18] and Value of Information
Analysis [61] in the 50s & 60s respectively, a number of applications of VoIA for the quantifica-
tion of the impact of underlying uncertainties on ESMs have been proposed in the literature.
However, VoIA has not received as much research attention as other uncertainty assessment
methods outlined in Section 2.1.ii).

A review of existing literature identified 19 applications of VoIA to energy systems prob-
lems. However, due to time limitations on this work this literature review was not extensive,
and further literature search is required to fully explore the extent of existing VoIA applications
to ESMs. Appendix A of [67] provides a further review of the use of stochastic programming
for energy systems analysis, discussing the use of VoIA within the identified studies.

Table 1 presents a summary of the characteristics of the chosen model formulation for
each application identified, and the uncertainties studied within the analysis.
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2 Literature Review 2.2 VoIA for ESMs

Paper Formulation Uncertainties considered
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[78] 1987 CP 2 D •

[79] 1990 CP 2 D • •

[80] 1990 CP 4 D • •

[81] 1998 CP 3 D • •

[42] 2007 CP 2 D • • •

[82] 2008 EC 1 N/A •

[66] 2009 CP N CT •

[83] 2009 EC 1 D • •

[84] 2013 CP 5 D • •

[85] 2013 CP 2 D • •

[86] 2014 CP 2 D • •

[67] 2015 CP 2 D • • • • •

[87] 2017 OP N CT •

[88] 2018 CP 2 D •

[68] 2019 CP 1 C • • •

[43] 2019 CP 2 DT •

[89] 2019 CP 1 D •

[90] 2019 CP 2 D •

[91] 2021 OP 1 C •

Analysis types: capacity expansion planning (CP), system operation (OP), economic modelling (EC); N
Decision stages indicates models which have been formulated as multi-stage stochastic programs of arbitrary
length (no. of stages); Random Variable (RV) distribution types: discete (D), continuous (C), the addition of
the symbol (T) indicates that the modelled random variables are timeseries vectors.

Table 1: Summary of model characteristics and considered uncertainties in VoIA
applications to Energy Systems Modelling identified in literature review
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2 Literature Review 2.2 VoIA for ESMs

Of the studies identified, most were found to formulate their decision problems using clas-
sical decision tree based stochastic programs. Further, most of the formulated decision prob-
lems were structured as two-stage4stochastic programs, with an initial planning decision step
followed by an operational decision step. A select number of studies chose to use either
simplistic single-stage stochastic programs [68, 82, 83, 89, 91], or more complex multi-stage
problem structures [66,80,81,84,87].

Reference [66] presents a different approach to multi-stage stochastic decision problems,
applying Bellman optimality [96] to determine the expected utility maximising decision path,
whilst [87] employs an optimal forwards scheduling algorithm which approximates opera-
tion of a hydro-electric plant as a Markovian system and uses a Least Squares Monte Carlo
approximation to compute the expected utilities of the control decisions. In [79] an alterna-
tive technique for describing the structure of energy system decision models and performing
stochastic utility computations in proposed, that of influence diagrams representations, which
provide greater clarity and interpretability of the structure of the decision problem and depen-
dencies within the underlying uncertainties. Finally, reference [82] presents a game theoretic
model of investment in electricity markets, which is comprised of a one-shot game, and con-
siders uncertainty in the shared information available to firms on the parameters defining the
game structure.

2.2.ii) Literature Critique

Statistical Representation of Parametric Uncertainties
The statistical treatment of parametric uncertainty in existing applications in the litera-

ture demonstrates some significant limitations, with data-driven statistical methods such as
sampling-based Monte Carlo methods with learned parameter distributions being used infre-
quently. As demonstrated by Table 1, most applications opt to use discrete approximations of
parameter distributions, neglecting the continuous nature of many uncertainties, with many
employing simplistic scenario basedmethods to which probabilities are assigned and justified
by ‘expert knowledge’ and which outcomes the authors deem ‘likely’. Such methods show
only limited advancements on traditional scenario based modelling, as they rely heavily on
qualitative judgements in their formulation. Whilst statistical information is introduced into
the modelling, its accuracy either has not or cannot be verified, and hence these methods
suffer from issues of lack of transparency and justifiability. [68] employs Monte Carlo meth-
ods to continuously distributed uncertain parameters, however, whilst doing so it considers
only a one-stage stochastic problem and severely limits the available action space to only 15
system design strategies. Hence, even the existing methods which use advanced statistical
techniques exhibit other weaknesses in the quality of their statistical treatment.

4 The number of ‘stages’ in a stochastic program refers to the number of iterations of successive decisions
and revelations of the state of the world that occur over the course of the defined decision problem, rather than
the number of time periods in the model within which decisions are made.
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Therefore, significant research effort is required to improve the completeness of the statis-
tical analysis applied to ESMs through the VoIA framework whilst maintaining computational
tractability5. Of particular importance in this regard is the widespread adoption of data-driven
uncertainty models, where parametric distributions are learnt from experimentation and his-
toric data [60], as this provides techniques for selecting probability distributions that are ex-
aminable and justifiable, removing qualitative judgements from the decision analysis. Some
critiques remain over the validity of even data-derived distributions, as certain characteristics
such as the significance of parameter covariance and the challenges associated with quan-
tify it, and the evolution of underlying distributions due to changes in the system state, such
as those induced by climate change [57], raise questions about whether the true underlying
distributions can be known or accurately modelled.

Studied Uncertainties & Analysis Comparability
The VoIA applications identified in the literature considered a broad range of sources of

uncertainty in their analyses. The most common uncertainties considered were those re-
lating to future energy demands, costs of both fuels and technologies, and climate policies.
However, as can be seen in Table 1, few studies managed to analyse the effects of a signif-
icant proportion of the set of underlying uncertainties simultaneously. This raises questions
about the validity of the results derived from these studies, as the impacts of uncertainties
on a given energy system decision problem are highly inter-dependent [62,68]. Thus, when
quantifying the impact of a given uncertainty, and identifying the critical uncertainties for a
particular decision problem, these results are only valid in a very restricted context, i.e. for
that particular decision problem and model structure where only the considered uncertainties
are acting. As all underlying uncertainties impact true energy systems, this context may not
be representative of the physical system being studied, and hence the results may not be
valid. Analyses with such limited considerations of uncertainty may lead to erroneous re-
sults if the underlying causal relationships between uncertainties are not represented in the
problem through the omission of a critical uncertain variable.

Further issues of result comparability arise, as of the studies identified in the literature,
very few study the same ESM. This is partly due to the saturation of ESMs in the litera-
ture [25, 33]. As each ESM contains unique subtitles within its formulation, each model re-
sponds differently over its (potentially unique) input space, and hence the impacts of given un-
certainties may differ from model to model. Any discrepancies between results derived from
the uncertainty study of different models are highly challenging if not impossible to robustly
reconcile, as a qualitative judgement must be made as to which model(s) most accurately

5 When applying sampling-based Monte Carlo methods to Bayesian Decision Analysis problems formulated
using classical scenario trees, the computational cost of model evaluation is at least multiplicative in the number
of samples drawn from the underlying distributions of uncertain parameters, i.e. O

(∏
i ni
)
, where ni is the

number of samples drawn for parameter i
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represent the true physical system, which in many cases is hypothetical and non-testable.
Further, this raises doubts about whether obtained results generalise acrossmodels. Demon-
strating this by evaluating an ensemble of models and observing result consensus presents
a significant increase in the computational and research time cost of performing uncertainty
analyses. The literature review did not identify any studies which compared the results of
VoIA applications between model formulations.

The uncertainty introduced by the severely limitedly predictable variability of many re-
newable generation technologies is of critical importance to the design of future net zero
energy systems [97], and hence the study of its impact is a key area for energy systems
research. Whilst some studies identified in the literature sought to account for this renew-
ables variability related uncertainty, many did so via crude approximations of the true, highly
complex nature of renewable generation, which contains many relatively poorly understood
spatio-temporal characteristics and internal causalities. Approaches commonly taken were to
either both spatially and temporally aggregate the analysis, removing much of the complexity
of the uncertainty at the expense of model accuracy, or to neglect timeseries dependencies
whilst retaining temporal resolution, considering only uncertainty in capacity factors which
are then used to augment the measured data. However neither of these methods are able to
quantify the true impact of renewable generation uncertainty on energy system design, which
is of significant importance to net zero policy development. Therefore, the development of
statistical analysis methods that are capable of handling and quantifying the impact of this
complex uncertainty associated with renewable generation is a research area which must
receive substantial attention for the field to progress.

Studied Model Scopes & Problem Types
Further, existing studies have demonstrated very limited capabilities in accounting for

and addressing the complex behaviours of large-scale energy systems, with most works em-
ploying extensive simplifications in their model formulations. Such simplifications include
removing spatial behaviours by aggregating energy flows to the national level, and removing
temporal behaviours by aggregating to annualised operation [42]. These aggregations are
employed to make the model formulations and their results more accessible and interpretable
to human decision makers, and to reduce the computational cost of the ESMs such that ex-
isting uncertainty analysis methods can be applied in a tractable computation time. However,
the literature demonstrates that such aggregations which limit a model’s ability to represent
temporal variation in renewable generation and energy transport effects have a significant
impact on the accuracy of the derived results [98–101]. Uncertainty quantification methods
of sufficient computational efficiency must be developed so that the impact of energy system
uncertainties on large-scale, high spatio-temporal resolution ESMs such as [20–22] can be
studied, to provide accurate and reliable analyses to inform policy & decision makers. The

12



3 Value of Information Analysis 3.1 Bayesian Decision Analysis

generalisations of the VoIA framework discussed in Sections 3.4.i) & 3.4.ii), which are par-
tially implied by the model formulations and discussions presented in [60] & [87], may provide
a pathway to developing such improved methods.

Whilst the study of capacity expansion planning problems is of great importance to the
cost-effective decarbonisation of modern energy systems, many other pertinent problems ex-
ist in the field of energy systems modelling which could be studied using the VoIA framework,
and whose solution could make contributions to decarbonisation efforts. However, the exist-
ing literature focuses primarily on capacity expansion planning problems, and the literature
review identified few other types of energy system problems to which VoIA has been applied.
A series of alternate problems to which VoIA could be applied are proposed in Appendix A.

Applied Value of Information Metrics
Of the VoIA applications to ESMs identified in the existing literature, no studies consid-

ered the case of imperfect information collection [59] and the associated Expected Value
of Imperfect Information (EVII), with only the more conceptually and computationally simple
metrics of Expected Value of Perfect Information (EVPI) and Value of Stochastic Solution
(VSS) being evaluated. This is likely primarily due to the problems and uncertainties being
studied in these applications, as considerations of imperfect information are most applicable
to uncertainties for which there exists an option for physical measurement, to which VoIA can
be applied to evaluate the net benefit of measurement. The literature studies mostly future
energy demand, cost, and climate policy uncertainties, which do not have the option of ex-
ante measurement. However, EVII can be applied to analyse the impacts of R&D investment
and improved forecasting [102], and so imperfect information studies could contribute addi-
tional understanding to the literature in future.

3. Theory of Value of Information Analysis
A brief overview of the Bayesian Decision Analysis (BDA) formulation and theory of the clas-
sical Value of Information Analysis (VoIA) framework is presented in Sections 3.1 to 3.3,
before generalisations of and extensions to the framework are discussed in Section 3.4. Ref-
erences [42,59,60,67] provide further detail on the theory underlying VoIA.

3.1 Bayesian Decision Analysis

3.1.i) Stochastic Decision Analysis

In Stochastic Decision Analysis (SDA), the aim is to determine the optimal action which
maximises the expected utility obtained from a system which is subject to some underlying

13



3 Value of Information Analysis 3.1 Bayesian Decision Analysis

uncertainty.
The generalised one-stage problem is defined as the selection of an action from the avail-

able action space, a ∈ A, in the presence of some uncertain state of the world, θ ∼ π(θ),
which acts on the system and leads to some returned utility6, u(a, θ), once the uncertain state
of the world is revealed. Hence, the action a must be taken before the uncertain parameter
θ can be observed. These problems can be extended to contain multiple decision stages,
where a successive sequence of n actions and revelations of uncertainty occur.

These decision problems are often described using decision trees7, which visualise the
evolution of the system arising from the different possible action pathways and the outcomes
that result [104], and provide an easily interpretable description of the problem that allows
expert knowledge to be readily incorporated into the description of complex systems. Fig-
ure 1 shows the decision tree for the general one-stage Stochastic Decision Problem (SDP).

A

a ∈ A

θ

θ ∼ π(θ) U

u (a, θ)

Figure 1: Decision tree representation of Prior Decision Problem
Adapted from Figure 1 of [59]

The process for solving the SDA can be formulated as a Stochastic Optimisation,

max
a∈A

Eθ
{
u(a, θ)

}
(1)

where the solution to the optimisation, a∗, is the determined optimal action for the deci-
sion problem. The determination of a∗ requires the decision maker to know the true prior
distribution over the uncertain state of the world π(θ).

6 Costs are defined as negative utilities
7 This Directed Acyclic Graph representation of Stochastic Decision Problems enables them to be readily

analysed using Bayesian Networks [103]
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3 Value of Information Analysis 3.1 Bayesian Decision Analysis

This formulation is fully general and admits action vectors in arbitrary spaces, which are
restricted to be members of a general constraint set A. The problem definition can be ex-
tended to allow the distribution of θ to be dependent on the action taken, a, i.e. θ ∼ π(a, θ).
This corresponds to the case of remedial actions which influence the state of the system.

In the context of BDA, this problem is known as the ‘Prior Decision Problem’, as the deci-
sion maker has only information on the prior distribution of the uncertain parameter θ.

3.1.ii) Deterministic Decision Analysis

Whilst the solution a∗ is stochastically optimal, alternative weakly sub-optimal solutions
can be identified by means of equivalently formulated deterministic methods at lower compu-
tational cost. The most commonly used deterministic method is the deterministic optimisation
derived when stochasticity is remove by assuming the uncertain parameter θ to take on it’s
expected value, θ̄ = E{θ}, the solution to which is denoted â. This deterministic approximat-
ing optimisation is termed the Expected Value Problem (EVP) [42,43,89].

3.1.iii) Bayesian Decision Analysis

The SDA is brought into a Bayesian setting through the introduction of a second, preceding
decision stage in which the decision maker is provided with a set of measurements options
E. By taking a measurement action e ∈ E, which results in measured data z ∼ π(z), the
decision maker can construct the resulting posterior over the uncertain parameter θ, θ ∼
π(θ|z) ∝ π(θ)f(z|θ), where f(z|θ) is the measurement model8of the system. This posterior
distribution, and the improved information it provides on θ, can then be used to inform the
second stage action, a, the decision maker takes, improving its performance. Using the prior
distribution over data measurements, π(z), the stochastically optimal measurement-action
pathway can be determined.

The process for solving the BDA can be formulated as a two-stage Stochastic Optimisa-
tion,

max
e∈E

Ez
{

max
a∈A

Eθ|z
{
u(a, θ)

}}
(2)

the solution to this optimisation comprises an optimal measurement action, e∗∗, and an
optimal action function which is dependent on the measured data, a∗∗(z), i.e. the expected

8 For problems in which there exists the option to make measurements of different quantities, z → φ ∈ Φ,
that provide different information on the uncertain state of the world, θ, then the probability model of each
measured quantity, fφ(φ|θ), must be used in the computation of the resulting expected utility. This complexity
is neglected for the sake of notational simplicity. For further detail see [59]
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3 Value of Information Analysis 3.1 Bayesian Decision Analysis

utility maximising action for the given posterior distribution, a∗∗(z) = maxa Eθ|z
{
u(a, θ)

}
.

In the context of BDA this problem is known as the ‘Pre-Posterior Decision Problem’,
as the initial measurement decision is made before any data is measured and hence any
posterior distribution can be constructed, but is made with the knowledge that the posterior
distribution can be exploited in the second stage decision. The decision tree representation
of this Bayesian Decision Problem (BDP) is given in Figure 2.

E

e ∈ E

Z

z ∼ π(z) A

a ∈ A

θ

θ ∼ π(θ|z) U

u (a, θ)

Figure 2: Decision tree representation of Pre-Posterior Decision Problem
Adapted from Figure 1 of [59]

The BDA framework requires the decision maker to have knowledge of both the true data
likelihood and conditional probability distributions, π(z) and π(θ|z). Therefore, the definition
of a valid BDP requires the construction of a valid underlying joint probability distribution for
the system, π(θ, z), which describes the distributions of the uncertain state of the world and
the measurement model of the system, f(z|θ), and leads to the required marginal and con-
ditional distributions.

The presented model is general, admitting analysis of both perfect and imperfect mea-
surement information. For the case of perfect information, the uncertainty in the state of the
world, θ, collapses when the measurement z is made, and the conditional probability distribu-
tion collapses to a Dirac delta, π(θ|z)→ δ(θ−z), making the expectation over θ|z determinis-
tic. The model can also be extended to allow for the introduction of uncertain measurements,
i.e. when a raw measurement z′ is made, the true value of the quantity being measured is
distributed as p(z|z′). Hence the BDA optimisation becomes,

max
e∈E

Ez′
{
Ez|z′

{
max
a∈A

Eθ|z
{
u(a, θ)

}}}
(3)
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In the Bayesian framework, it can be seen that the expected utility achieved by the Prior
Decision Process implicitly takes expectations over data measurements,

Eθ,z
{
u(a∗, θ)

}
= Ez

{
Eθ|z

{
u(a∗, θ)

}}
= Eθ

{
u(a∗, θ)

}
(4)

as the action taken is not dependent on any measurement data as the decision maker
does not have access to such information, a∗(z) = a∗. This follows from the expansion of the
integral form of the expectations.

3.1.iv) Expected Utilities of Decision Processes

In the formulation of the BDA problem it has been shown that the decision making task un-
der uncertainty can be performed using four different processes, which respectively involve
the solution of the following decision problems: Expected Value Problem (EVP), Prior De-
cision Problem, Perfect Information Pre-Posterior Decision Problem, Imperfect Information
Pre-Posterior Decision Problem.

A fifth decision process, involving the solution of the Perfect Control Decision Problem
and which is related to the Value of Control, is proposed in the literature [85]. In this case,
the state of the world θ is assumed controllable, and the utility maximising state-action pair is
sought. However, in this instance of controllable θ statistical analysis becomes redundant as
the problem collapses to determinism, hence this decision process is not discussed further as
it is not relevant to the study of methods for quantifying the impact of uncertainty considered
in this work.

Table 2 summarises the five decision process that can be applied to the BDP, and impor-
tantly provides the expected utilities that each of them obtain.

For more complex decision problems, for instance those with continuous uncertain pa-
rameters θ for which decision trees cannot be constructed, it may not be possible to determine
the expected utilities exactly. In these cases the required expectations are approximated us-
ing Monte Carlo methods, with samples from the appropriate underlying distributions drawn
using some appropriate method such as Markov Chain Monte Carlo techniques. Some ex-
pected utility evaluations, such as the case of uncertainmeasurements (Equation (3)), require
multiple layers of expectations to be computed. The computational implications of this are
discussed in Appendix B.

Eθ
{
u(a, θ)

}
≈ 1

N

N∑
j=1

u
(
a, θ(j)

)
where θ(j) ∼ π(θ) ∀ j (5)
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3 Value of Information Analysis 3.2 Value of Information

3.2 Value of Information

The Value of Information (VoI) is defined as the increase in the expected utility obtained
from the solution of a decision problem when a decision maker is provided with additional
information relating to said problem, typically concerning the uncertain state of the system.

For a risk neutral decision maker, VoI is always non-negative [43]. Proof of this is provided
in Appendix C.

As demonstrated in Section 3.1, a range of different decision processes which incorporate
varying degrees of information on the decision problem can be applied to a general BDP.
Therefore, a set of different VoI metrics can be defined. This Section presents the three most
common VoI metrics applied in the literature: Value of Stochastic Solution (VSS) [67, 84,
90], Expected Value of Perfect Information (EVPI) [60, 67, 84], Expected Value of Imperfect
Information (EVII); and discusses their interpretations.

3.2.i) Value of Stochastic Solution (VSS)

The VSS is defined as the difference between the expected utilities achieved by the EVP
and Prior Decision Problem,

VSS = E{prior decision utility} − E{EVP decision utility}
= max

a∈A
Eθ
{
u(a, θ)

}
−max

a∈A
u
(
a,E{θ}

) (6)

It is interpreted as the expected benefit of introducing stochastic information into the de-
cision making process, moving from a deterministic optimisation to a stochastic version that
accounts for the uncertainty in outcomes. This expected utility improvement comes at the
expense of increased solution complexity for the optimisation.

Large values of VSS in a given domain of decision problems motivate the development
of statistically informed decision processes for such applications. The study of VSS will be
highly pertinent throughout the development of Digital Twins for automated asset decision
making, as it will allow researchers to quantify the impact of underlying uncertainties on the
expected utility performance of such systems, and so whether the development of uncertainty
informed decision strategies within the Digital Twin ecosystemwill provide substantial benefits
to the end-users.
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3.2.ii) Expected Value of Perfect Information (EVPI)

The EVPI is defined as the difference between the expected utilities achieved by the
Perfect Information Pre-Posterior Decision Problem and the Prior Decision Problem,

EVPI = E{perfect information decision utility} − E{prior decision utility}

= Ez
{

max
a∈A

u(a, z)

}
−max

a∈A
Eθ
{
u(a, θ)

} (7)

Expected Net Benefit of Measurement
The EVPI is traditionally interpreted as the expected benefit arising from measuring the

true state of the world prior to making a decision. It can also be considered as a decision
maker’s willingness to pay for such a perfect measurement. Physical measurements com-
monly have some associated cost, c(e), hence the expected net benefit of taking a measure-
ment e to support a given decision problem is,

E{net measurement benefit} = VoI(e)− c(e) (8)

If this quantity is positive then it is worth the decision maker investing is the measurement.
In this way EVPI can be used to support business decisions by providing a quantitative frame-
work for determining whether investments in costly measurements, such as asset monitoring
or the contracting of expert advice, provide net benefit to the business.

Uncertainty Quantification Metric - Cost of Uncertainty
However, the EVPI can also be viewed in the opposite sense as the Penalty of Uncertainty.

In this interpretation, the EVPI is seen as the reduction in the expected utility obtained from
the decision problem as a result of the state of the world, θ, being uncertain or unknown. In
this way it can be used as an Uncertainty Quantification (UQ) metric for the impact that the
underlying uncertainty of the problem has on the performance of the decision being made.
If the EVPI is small, then the decision is found to be ‘performance robust’ to the underlying
uncertainties. However, if the EVPI is large then the decision is found to be sensitive to
the uncertainties. A key strength of EVPI as a UQ metric is that it quantifies the impact
of uncertainty both in terms of the model outputs, capturing the propagation of the input
uncertainties through the model in an end-to-end fashion, and in units of utility, allowing the
impact to be expressed in terms of the objective of the decision maker, which provides a clear
and comparable measure of uncertainty cost.
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3.2.iii) Expected Value of Imperfect Information (EVII)

The EVII is defined in an analogous manner to the EVPI, however for the case where the
measurement z provides uncertain information on θ, i.e. θ ∼ π(θ|z) 6= δ(θ − z). Hence it is
given by the difference between the expected utilities achieved by the Imperfect Information
Pre-Posterior Decision Problem and the Prior Decision Problem,

EVPI = E{imperfect information decision utility} − E{prior decision utility}

= Ez
{

max
a∈A

Eθ|z
{
u(a, θ)

}}
−max

a∈A
Eθ
{
u(a, θ)

} (9)

The EVII is upper bounded by the EVPI, with equality achieved in the limit as the informa-
tion uncertainty tends to zero. EVII characteristic curves, such as that presented in Figure 3,
can be used as a decision support tool, plotting the EVII over the range of a parameter quan-
tifying the measurement uncertainty against the cost of measurements of those precisions,
to identify regions in which uncertain measurements are economical.

The EVII therefore has the same expected benefit of measurement interpretation as the
EVPI, but is less readily applicable in the Penalty of Uncertainty sense.

EVPI

c(e)

σ2

EVII

Figure 3: Illustrative EVII vs. measurement cost curve
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3.2.iv) Comparison of Value of Information Metrics

Figure 4 presents a visual comparison of the VoI metrics presented and how they relate
to the different decision processes discussed in Section 3.1. The figure clearly demonstrates
the opportunity for defining additional VoI metrics.

E{utility}y y y y

ŷ y∗ y∗∗ y∗∗p

VSS EVPI

EVII

Figure 4: Visual comparison of VoI metrics
Adapted from Figure 1 of [67]

3.3 Critique of Value of Information Framework

As a result of the way the VoIA framework is formulated and the assumptions it makes,
there exist a number of weaknesses of the method which must be understood to properly
contextualise and interpret the results it produces.

The most significant criticism raised relates to the assumption that the decision maker
has perfect knowledge of the underlying statistical distributions of the system, i.e. π(θ, z). In
most applications the distributions defining the system are chosen during the model design,
however this leads to the standard issues of lack of transparency and justifiability discussed in
Section 2.2.ii). Wherever possible the distributions of uncertain parameters should be learnt
from data, however even in this case, concerns remain over whether historic or simulation
data provides an accurate representation of future system behaviour, and how data sources
are selected. If the model distributions chosen do not match the true system then the results
of the VoIA are invalid. Though, the significance of this effect can be analysed using the VoIA
framework itself, as discussed in Section 3.4.i).

The choice of model distributions has a substantial impact on the results of the VoIA. This
means that the computed VoI metric values are only valid within the context of the particular
distributions chosen, further compounding the result comparability issues arising from ESM
formulation differences discussed in Section 2.2.ii). One option for addressing these con-
cerns surrounding result generalisation is to attempt to demonstrate robustness of the VoIA
result to the assumptions made in the model formulation, by performing sensitivity analysis
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over the model setup, for instance distribution hyper-parameters. However, this incurs a sig-
nificant additional computational cost multiplication on an already computationally expensive
statistical method.

A further critique of the VoIA framework is that whilst the computation of VoI metrics incurs
a significant additional computational cost compared to deterministic analysis, explored fur-
ther in Appendix B, VoIA is only capable of providing decision makers with information on the
expected performance of their decision processes. This limits the insight that can be gained
from such analysis, as the lack of distributional information prevents uncertainty related risk
from being studied through this method.

3.4 Extensions of Value of Information Framework

In this Section a series of extensions to the classical VoIA framework are proposed. Dis-
cussions of these extensions were not identified through the literature review, however that
literature review was not extensive, and so further study is required to determine the novelty
of these approaches in their application to ESMs.

3.4.i) Stochastic Optimal Control Generalisation

Classical VoIA is formulated in the context of a BDP. Within BDA it is assumed that the
decision maker is perfectly rational and behaves optimally in terms of expected utility ob-
tained with the information available to them. VoI metrics then compare the Expected Utility
Performance (EUP) of decision processes which have access to different sets of information
about the BDP. For example, the VSS compares the EUP of the case where only mean esti-
mates of the uncertain parameters are available to that where the prior distributions over the
parameters are available, and EVPI compares the EUP of that latter case to the case where
the true parameter values are known.

Taking one step into abstraction, the BDP can be considered as a Stochastic Optimal Con-
trol problem, where the action decision made by the decision maker is the control scheme
implemented to solve the control task, and the formulated decision problem defines the sys-
tem in which that control scheme acts. In BDA it is assumed that this control scheme is always
expectation optimal subject to the quantity of information on the system available, however
this assumption can be readily relaxed. This enables the VoIA framework to be generalised
to allow for the study of the impact of uncertainty on the EUP of arbitrary control schemes
applied to a decision problem. In this work the setup of an arbitrary control algorithm used to
determine the taken action for a given decision problem formulation will be termed a Decision
System (DS).
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Considering a general control scheme a(·), which has access to some information9 z on
the underlying uncertainty of the system, θ, the EUP of this control scheme is given by,

y
(
a(·)
)

= Eθ,z
{
u
(
a(·), θ

)}
= Ez

{
Eθ|z

{
u
(
a(·), θ

)}}
(10)

The EUP metric of ‘goodness’ of control is comparable between control schemes in the
context of the chosen DS, and the difference in EUP between control schemes provides a
generalised concept of VoI metrics. In this way, it can be seen that this generalisation of
the VoIA framework is performing a very simple analysis, the comparison of the EUP of
(potentially stochastic) control schemes for a given decision based stochastic control task
defined by the DS. Hence, Expected Utility Performance Difference (EUPD) metrics can be
defined to study features beyond information availability, and so act as a generalisation of
VoI metrics.

In this generalised framework care must be taken when interpreting EUPD metrics, as
they are dependent on the controller architecture, and explicit definition of the purpose, valid
scope, and interpretation of each metric is required. For instance, an EUPD metric which
compares two different controller architectures which have different information availabilities
contains contributions from both VoI and controller design performance that cannot immedi-
ately be separated.

As with the classical VoIA framework, the EUP of the Perfect Information Pre-Posterior
decision process provides an upper bound on the achievable control performance of the
DS, and if calculable, can be used as a benchmark for the performance of all other control
schemes. The generalised framework is focused more on the direct comparison of EUP
values than the more restrictive definition of EUPD metrics. These comparisons must be
carefully designed to ensured that they provide the most appropriate information for the de-
sired study, and that the valid contexts of the EUP values are properly accounted for so that
the comparisons provide the required interpretation.

Nonetheless, EUPD metrics can be defined to assess the impact that uncertainties have
on the performance of control schemes in the context of the uncertain DS. Further, as different
controller architectures are comparable under this generalised framework, the EVPI becomes
of greater use for systemswith non-measurable uncertain parameters, as the EVPI for a given
controller architecture provides a UQ metric that quantifies the impact that the underlying
uncertainties have on the EUP of that controller. This EVPI UQ metric can be used alongside
the base EUP of the controller to provide the meta decision maker with information on both
the performance and ‘performance robustness’ to uncertainty of each control scheme, to
better inform controller selection.

9 The concept of the information z is extended to include distributional information on the uncertain parame-
ters of the DS the control scheme has access to. This information can be zero-dimensional so that non-Bayesian
& non-statistical control schemes can be incorporated into the general framework.
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3 Value of Information Analysis 3.4 Extensions of VoI Framework

Study of High Complexity Systems
A key advantage of the generalised framework is that it allows for the study of simpler

control schemes than the stochastically optimal scheme required by BDA. As a result, this
allows for the study of far more complex Decision Systems for which the stochastically opti-
mal control scheme cannot be tractably determined, and the analysis of the impact that the
underlying uncertainty of the system has on the performance of the decision making pro-
cess in these highly complex environments. A good example of such complex DSs are those
containing large numbers of decision stages, for which the outcome space grows combinato-
rially, making them rapidly intractable for classical VoIA. Of particular interest is the study of
approximations to the stochastically optimal control scheme and their relative performance,
which determines their suitability for use as low computational cost controllers. This sug-
gests a fundamental suitability of Reinforcement Learning based methods to generalised
VoIA studies, as these advanced control techniques seek to approximate the stochastically
optimal scheme. This link to Reinforcement Learning approaches could enable the study
of vastly more complex and potentially blackbox systems for which reasonable controllers
cannot be analytically designed. This avenue of development requires further research, and
may find motivating applications in the uncertainty analysis of Digital Twin based automated
asset decision processes. Other potential controller architectures of interest include Markov
Decision Processes, which are discussed in a VoI context in [60], and Linear Quadratic Reg-
ulators [105].

Section 4 applies the proposed generalised VoIA framework to quantify the impacts of
uncertainty in Linear Programming (LP) based decision problems, before a numerical study
of an example energy system application is conducted in Section 5.

Analysis of Incorrect Priors & Likelihoods and Erroneous Measurements
This extension of the VoIA framework allows it to partially address one of its greatest criti-

cisms, that of the validity of chosen model distributions discussed in Section 3.3, by allowing
for the quantification of the impact of incorrect model distributions and measurement errors
on the analysis results. The formulation of this type of study is presented in Appendix D.

3.4.ii) Generalised Model & Correspondence to Sensitivity Analysis

When considering the case in which Monte Carlo approximation is used to compute the
EUP of a control scheme, the procedure of repeated sampling and system evaluation re-
quired for the expectation computation can be shown to be analogous to a statistical form of
traditional Sensitivity Analysis (SA).

Figure 5 compares stylised representations of the evaluation of a scenario from a SA
with the evaluation of a sample from an expected utility computation, for a general DS to
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which an arbitrary control scheme is applied. In SA, the model, in this case the application
of a given control scheme to the DS, is evaluated over a set of parameter value scenar-
ios, {θs}s∈S , selected by an expert user, and the resulting utility performance is compared
to that of the original case, θ̂. When the EUP of a control scheme is evaluated via Monte
Carlo approximation, a set of samples are drawn from the underlying parameter distribution,
{θ(j) : θ(j) ∼ π(θ)}Nj=1, and the model utility performance is then evaluated for each sample,
before the mean utility performance is computed and used as the expectation estimator. In
this way, the procedure of computing EUP via Monte Carlo approximation can be seen to be
equivalent to a statistical version of Sensitivity Analysis.

Decision Systemθ ← {θ̂}∪{θs}s∈S

a(·)

u
(
a(·), θ

)
(a) Scenario evaluation

Decision Systemθ, z ← π(θ, z)

a(z, ·)

u
(
a(z, ·), θ

)
z

(b) Sample evaluation with optional measurement

Figure 5: Comparison of traditional Sensitivity Analysis scenario evaluation with sample
evaluation procedure of generalised VoIA

The generality of the procedure for computing the utility performance of a given control
scheme for a given Decision System is important, as it enables the generalised VoIA frame-
work to be applied to simulation based problems, greatly broadening its potential Engineering
applications. These simulations could take the form of Digital Twins of infrastructure assets
and systems, allowing the framework to be used to assess the ‘performance robustness’ of
the corresponding Physical Twins, and hence provide a quantification of some aspect of their
resilience.
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4. Linear Programming Based Decision Problems

4.1 Motivation

As outlined in Section 2, the solution of capacity expansion planning problems to identify min-
imal cost fully renewable energy system design strategies is of critical importance to enabling
a cost-effective transition to net zero carbon future energy systems. Current state-of-the-art
methods, such as [20–22], produce linearised models of the temporal network physics of en-
ergy systems, and from these formulate Linear Programs (LPs) that are solved to identify the
minimal cost system design under the model. As discussed in Section 2.1.i), energy systems
are subject to substantial uncertainties, which leads to uncertainty in the parameters used
to define these Energy System Optimisation Models (ESOMs). However, existing LP-based
methods for large-scale energy system analysis are all deterministic, using point estimates
of the uncertain parameters. They can therefore be seen to be Expected Value Problems
(EVPs) for the capacity expansion planning strategy selection Bayesian Decision Problem
(BDP).

This motivates the use of the generalised VoIA framework proposed in Section 3.4.ii) to
study the impact that the underlying uncertainties of energy systems have on the performance
of the system designs suggested by these LP-based ESOMs.

The remainder of the Section presents how the generalised VoIA framework can be ap-
plied to general LP-based decision problems.

4.2 One-Stage Problem

It is desired to formulate a one-stage Bayesian Decision Problem (BDP) for a linear system
in which the following general Linear Program can be naively defined,

max
x

cTx

s.t. Ax ≤ b
(11)

where x is the action, cTx the objective, and Ax ≤ b the constraint set of the system.
However, the parameters defining the system are all uncertain, c, A, b ∼ π(c, A, b).
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4.2.i) Uncertain Constraint Set & Infeasibility

Once the action, x, has been taken, the true state of the world, θ = {c, A, b}, is revealed.
However, due to the uncertainty in the constraint set, the taken action x may be infeasible.

For systems where infeasibility of the action is not tolerable, then solution strategies must
use the ‘safe’ system constraint set, which is the subset of the uncertain constraint set in which
all points are feasible for all possible realisations of A, b, defined S = {x : Ax ≤ b ∀ A, b ∈ Ω}
where Ω is the sample space of the stochastic problem. This approach is applied in [67,84].
However, this is a severe modelling approach which can lead to excessively conservative and
poorly performing solutions. Further, for this case, unbounded probability distribution models
such as the Gaussian lead to the BDP, Equation (11), being ill-defined, i.e. without a solution.

In some Engineering applications infeasible solutions may be allowable, but it may be
desired to limit the probability of their occurrence. In this instance, Chance Constrained
Programming (CCP) [74,106,107] can be employed, leading to the optimisation formulation,

max
x

cTx

s.t. Pr (Ax ≤ b) ≥ 1− γ
(12)

where γ is the constraint violation probability tolerance parameter. However, unless cer-
tain conditions are satisfied by the problem formulation, the Chance Constrained optimisation
becomes either non-linear, or more problematically non-convex [108, 109]. Therefore, CCP
does not allow for the study of general uncertainties in linear systems, and so an alternative
approach is sought.

4.2.ii) Constraint Violation Penalisation

In the proposed approach it is assumed that action infeasibility is allowable, but that there
is some cost associated with violating the constraints of the system. Therefore, the system
utility function is extend to be defined as,

u(x, θ) = cTx− f (Ax− b) (13)

where f(·) is the constraint violation penalisation cost function. The overall utility can be
seen to have contributions from the objective of the linear system and from the constraint vio-
lation penalty, which can be more explicitly expressed as f(max[Ax− b, 0]), where the max is
a vector operation. Therefore, this formulation can be seen to be a relaxation of the original
Linear Program. For some applications there may be a subset of deterministic constraints,
Cx ≤ d, which cannot be violated, and these can be additionally imposed on the system.
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The BDP for the system can therefore be written as,

max
x

Ec,A,b
{
cTx− f

(
max[Ax− b, 0]

)}
s.t. Cx ≤ d

(14)

which is not in general a LP, due to both the constraint violation penalisation function,
f(·), and the probability density functions of the uncertain parameters. Hence, the BDP is a
non-linear Stochastic Program.

For computational simplicity the expectations over the uncertain parameters can be sep-
arated out, leading to,

max
x

Ec{c}Tx− EA,b
{
f
(
max[Ax− b, 0]

)}
s.t. Cx ≤ d

(15)

If a linear constraint violation penalty is chosen, defined using a per unit violation distance
cost vector v, the utility function of the system becomes,

u(x, θ) = cTx− vT max[Ax− b, 0] (16)

This can be seen to be closely related to the stochastic Lagrangian function of the naively
proposed LP of the system10, showing this to be a very natural way of penalising constraint
violations in the context of a linear system.

Alternatively, an indicator function based constraint violation cost could be imposed,

u(x, θ) = cTx− vT 1(Ax− b > 0) (17)

10 The Lagrangian of Equation (11) is L(x, µ) = cTx − µT (Ax − b), where µ ≥ 0 and the complementary
slackness condition for optimality, µT (Ax− b) = 0, holds. Specifically, the utility function is an evaluation of the
stochastic Lagrangian function at the point in dual space defined by the cost vector v, i.e. L(x, µ = v).
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This can be seen to impose a cost on the marginal probability of violation of each con-
straint, as,

EA,b
{
vT 1(Ax− b > 0)

}
=
∑
i

viEA,b
{
1
(
(Ax− b)i > 0

)}
=
∑
i

vi Pr
(
(Ax− b)i > 0

)
(18)

and is therefore closely linked with a relaxation of Chance Constrained programming.

The constraint violation penalisation function for the BDP, f(·), should be chosen to most
appropriately model the physical cost incurred by the violation of the system constraints, and
its functional form can be selected for each constraint individually as to be most suitable. The
form of cost function has a negligible impact on the computational cost of the EVPI calculation
(Section 4.2.iv)), but significantly influences the complexity of determining the stochastically
optimal solution to the BDP, required to compute the VSS (Section 4.2.v)).

4.2.iii) Expected Value Problem

The EVP for the uncertain linear system is given by the LP,

max
x

ĉTx

s.t. Âx ≤ b̂
(19)

where ĉ = E{c}, Â = E{A}, b̂ = E{b}, noting that the EVP solution cannot violate its esti-
mation of the constraint set, simplifying the utility function. The solution to this LP, x̂, is used
as an approximation to the stochastically optimal (Prior) solution, x∗.

The expected utility performance achieved by the EVP solution can be computed via
Monte Carlo approximation, using samples drawn from the parameter distributions, {(c(j), A(j), b(j)) ∼
π(c, A, b)}Nj=1,

ŷ = Ec,A,b
{
u(x̂, θ)

}
≈ 1

N

(∑
j

c(j)

)T
x̂−

∑
j

f
(

max
[
A(j)x̂− b(j), 0

]) (20)
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4.2.iv) Expected Value of Perfect Information

As described in Section 3.4.ii), the EVPI can be used as a metric to quantify the impact
the uncertainty of the model parameters has on the performance of the LP-based decision
process.

For the case of LP-based decision models, the expected utility of the Perfect Information
Pre-Posterior decision process is computed by solving the LP defining the system for each
sample from the parameter distributions,

y∗∗p
(j) = max

x
c(j)Tx

s.t. A(j)x ≤ b(j)
(21)

and using the mean utility as a Monte Carlo approximation of the true expected utility,

y∗∗p = Ec,A,b
{
u(x∗∗p , θ)

}
≈ 1

N

∑
j

y∗∗p
(j) (22)

In this case the utility simplifies to the returned objective function value, as the LP cannot
violate the system constraints as it has knowledge of the true constraint set. Note that in-
sufficient penalisation of constraint violations will result in ill-conditioned BDPs for which the
optimal Perfect Information action is infeasible and cannot be identified by the above LP.

The Expected Value of Providing Perfect Information to the linear Program decision pro-
cess (EVPPIP) is therefore given by,

EVPPIP = y∗∗p − ŷ = EVPI + VSS (23)

and is interpreted as the reduction in the expected utility obtained by the LP-based deci-
sion process as a result of the uncertainty in the system parameters, i.e. how much worse
the LP performs in expectation due to not having knowledge of the true system parameter
values, and instead having to use their expected values. In this way the EVPPIP acts a UQ
metric quantifying the ‘performance robustness’ of the LP-based decision process to the un-
derlying uncertainty.

The EVPIIP = EVII + VSS can also be computed and used to aid assessment of the net
benefit of improved measurement in the manner of classical VoIA.
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4.2.v) Value of Stochastic Solution

If the BDP of the system, given by Equation (14), can be solved to determine the stochas-
tically optimal Prior action, or this solution can be closely approximated, then the VSS can
be computed as,

VSS = y∗ − ŷ (24)

where y∗ is the expected utility obtained by the (approximate) stochastically optimal solu-
tion.

The VSS provides a more realistic metric of the decision performance reduction arising
from the underlying uncertainty of the system, as the decision maker is not able to achieve y∗∗p
unless they have access to perfect measurements of the true system parameters (in which
case the uncertainty analysis is redundant), but they are in theory capable of implementing
the stochastically optimal Prior action and thus achieving y∗.

However, solving the Prior SDP to identify the stochastically optimal Prior action, and
hence y∗, may be computationally intractable due to the non-convexity and potential ill-
conditioning of the BDP Stochastic Optimisation, Equation (14). Stochastic global optimisa-
tion algorithms such as Stochastic Gradient Descent [110], Particle Swarm, or Evolutionary
Strategies [111,112], could be used to approximately solve the Stochastic Optimisation. Al-
ternatively, duality bound methods could be employed to compute an upper bound on the
VSS [113]. Monte Carlo approximation of the EVPPIP = EVPI + VSS requires the solution
of the Perfect Information LP, Equation (21), for each of the N samples drawn from π(θ), and
therefore can be used as a comparatively computationally efficient upper bound on the VSS,
as its evaluation requires only the solution of deterministic decision problems.

If the VSS, or its upper bound, can be demonstrated to be small, then the EVP can be seen
to be ‘performance robust’ to the underlying uncertainty of the problem, and thus provide a
sufficiently performative and highly computationally efficient approximation of the stochasti-
cally optimal solution. In this way, the generalised VoIA framework can be used to assess
the performance suitability and robustness of deterministic LP-based decision processes.

32
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4.2.vi) Illustration of Methodology

Figure 6 provides a two-dimensional illustration of the machinery of the proposed method-
ology for the purposes of providing intuition on the problem setup and motivation behind the
formulation. The assumed constraint set of the EVP is shown using black lines, with the EVP
solution indicated with a black spot. Grey lines show the true constraint set for two samples
from the distribution of the uncertain system parameter, θ, with one sample leading to the
EVP solution violating the true system constraints. The Perfect Information Posterior solu-
tions for the two samples are marked. The stochastically optimal Prior solution is indicated
in red, and is a conservative due to the penalisation of constraint violations.

(x̂, ŷ)

no violations

(x∗∗p (j),y∗∗p
(j))

(x∗, y∗)

violatio
n

vio
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tio

n

x

y

Figure 6: Illustration of constraint violations of EVP solution for system parameter samples
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4.2.vii) Extension to Action & Constraint Violation Cost Uncertainty

The proposed method can be readily extended to study the impact of action implemen-
tation uncertainty and constraint violation cost uncertainty on the performance of LP-based
decision processes, as demonstrated in Appendix E.1.

4.3 Two-Stage Problem

The proposed methodology for studying the impact of uncertainties on LP-based decision
problems can be readily extended to the analysis of two-stage decision problems. Such two-
stage problems are better suited for application to the study of large-scale ESOMs, such
as [20–22], which have a two-layer optimisation structure, where decisions are made on
both the high-level design of the energy system and the operational strategy of the system.
The analysis of two-stage problems behaves very similarly to the one-stage analysis and
provides limited additional insight, hence details of the extension are provided in Appendix
E.2 for reference only.

5. Numerical Example of Application of VoIA to LP-based
Energy System Model

This Section presents a simple numerical example of the application of the uncertainty anal-
ysis methodology for LP-based decision problems proposed in Section 4 to a stylised energy
system capacity expansion planning problem. Through this example, the capabilities of the
proposed analysis, and its potential for providing insight into the impact of uncertainties in
energy system design problem applications, are demonstrated.

5.1 Definition of Stylised Energy System Design Task

A stylised renewable generation asset portfolio design task is considered, where it is desired
to identify the minimal cost set of renewable generation asset capacities to meet the energy
needs of the North East of England, subject to operational conditions restricting the allow-
able variability of the net power generation timeseries, considering only supply side effects
and neglecting transmission losses. This results in a linear model of the NE energy supply
system.
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The naive stochastic Linear Program for the system is given by,

min
∑
i

ciCi (25)

over Ci ∀ i

s.t.
∑
i,t

Cig̃i(t) ≥ α (25a)

∑
t

max
[
0, β −

∑
i

Cig̃i(t)
]
≤ γ (25b)

Ci ≥ 0 ∀ i (25c)

where the parameters of the problem are given as follows:

Ci : asset capacities of the three generation technologies, solar, offshore wind, and nearshore
wind, located as shown in Figure 7

g̃i(t) : historic hourly resolved normalised generation power timeseries for each asset, ob-
tained from renewables.ninjjjjja [38,39], over the time window considered, t ∈ T

ci : uncertain annual per unit capacity costs of each generation technology

α : minimum annual TWhs of energy generation required from the generation portfolio,
parameterising the aggregate energy generation constraint Equation (25a), which can
also be specified as an equivalent mean power generation in GW

β, γ : parameters of the stylistic net generation variability constraint, Equation (25b), which
requires fewer than γ GWh/year to be dropped below a threshold power generation
level of β GW

The non-negativity of asset capacity constraints, Equation (25c), are deterministic con-
straints for the problem and cannot be violated.
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Figure 7: Location of renewable generation assets for NE energy system design task [114]

A linear constraint violation penalisation cost function is used, resulting in the following
formulation of the BDP for the energy system design task,

min Ec,θ
{∑

i

ciCi +

(
vt ·max

[
0, α−

∑
i

Ci
∑
t

g̃i(t)
]

+ vd ·max
[
0,
∑
t

max
[
0, β −

∑
i

Cig̃i(t)
]
− γ
])}

(26)

over Ci ∀ i

s.t. Ci ≥ 0 ∀ i (26a)

where θ is a random variable parameterising the uncertainties in g̃i(t), as described later,
and noting that as the objective is to be minimised the constraint violation cost is additive.
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The EVP of the BDP is therefore given by,

min
∑
i

ĉiCi (27)

over Ci ∀ i

s.t.
∑
i,t

Cig̃i(t)
∧

≥ α (27a)

∑
t

max
[
0, β −

∑
i

Cig̃i(t)
∧]

≤ γ (27b)

Ci ≥ 0 ∀ i (27c)

This can be converted into explicit LP form by applying the standard trick for handling con-
vexmax[. . .] formulations [115], introducing slack variables φt to representmax

[
0, β −

∑
iCig̃i(t)

]
,

yielding,

min
∑
i

ĉiCi (28)

over Ci, φt ∀ i, t

s.t.
∑
i,t

Cig̃i(t)
∧

≥ α (28a)

∑
t

φt ≤ γ (28b)

φt ≥ max
[
0, β −

∑
i

Cig̃i(t)
∧]

∀ t (28c)

φt ≥ 0 ∀ t (28d)

Ci ≥ 0 ∀ i (28e)
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5.2 Numerical Trials & Results

The EVP was solved using the parameter values given in Table 3, and hourly normalised
generation data from 2018. A summary of the identified solution, x̂, is provided in Table 4.

Mean annualised asset
capacity costs11(£M/GW/year)

System constraint parameters

Solar Offshore
wind

Nearshore
wind

α (GW) β (GW) γ (GWh/yr)

150 400 350 10 2 43812

Table 3: Parameter values used for Expected Value Problem

Asset capacities (GW) Estimated system
cost (£B/yr)

Solar Offshore
wind

Nearshore
wind

0.79 13.57 3.82 6.884

Table 4: Summary of solution to Expected Value Problem

Uncertainty analysis was performed considering uncertainties in the asset costs and nor-
malised generation power timeseries, with the renewable generation uncertainty initially mod-
elled via the inclusion of a multiplicative random variable representing uncertainty in the ca-
pacity factor of generation for each asset13,

gi(t) = κig̃i(t)
∧

where κi ∼ π(κi) (29)

11 Annualised asset capacity costs approximated via back calculation using costs and service lifetimes
from [116]

12 Equivalent to an output of 1GW below the threshold β for 5% of the year
13 Note, this very simple uncertainty model leads to non-physical normalised generation powers, i.e. nor-

malised values above 1, however for the purposes of this stylistic problem this is acceptable
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For simplicity, the random variables defining the underlying uncertainties of the energy
system were taken to be Gaussian distributed as,

ci ∼ N
(
ĉi, 102

)
κi ∼ N

(
1, 0.012

)
(30)

Taking the constraint violation penalisation costs to be,

vt = 200 £M/GWh vd = 500 £M/GWh (31)

the true expected utility (cost) of the EVP solution, x̂, was approximated via Monte Carlo
approximation using 1000 samples from the uncertain parameter distributions.

Then, the expected costs of the Perfect Information & Partial Perfect Information Pre-
Posterior decision processes were computed by solving the posterior decision LP for the
cases where perfect information on the: asset costs, asset capacity factors, and both as-
set costs and capacity factors; were available. For the Partial Perfect Information decision
problem, the unknown parameter values were taken as their mean values to preserve the de-
terminism of the LP. For each expected cost approximation 100 samples14 from the parameter
distributions were used.

Finally, an attempt was made to identify the stochastically optimal Prior system design
strategy by directly optimising the expected cost function using Particle Swarm Optimisation
(PSO).

The results of these numerical trials are summarised in Table 5.

A further uncertainty analysis was conducted, analysing the impact of uncertainty in (only)
the renewable power generation timeseries on the performance of the EVP LP-based system
design strategy. Each year of available data from 2000-2019 was considered as a draw from
the underlying distribution of power generation timeseries, with the EUP of the EVP and
Perfect Information Pre-Posterior decision processes evaluated for each of the year samples
to compute the EVPPIP. Figure 8 and Table 6 present the results of this uncertainty analysis,
in which the EVPPIP was found to be 0.243 £B/yr, or 3.46% of EVP solution EUP, ŷ.

14 A small number of samples were used as the computational cost of solving the necessary LPs was
significant and limited computational resources were available. It is recommended that more samples are used
in full-scale studies to reduce the Monte Carlo approximation error. However, the computational expense of this
uncertainty analysis method remains a significant consideration, as discussed in Section B

15 Achieved by generation asset portfolio: 1.38 GW Solar, 13.19 GW Offshore wind, 7.80 GW Nearshore
wind
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Metric Value (£B/yr) [% of †]

EVP estimated cost (objective) 6.884

EVP true expected cost † 6.942

Asset cost informed decision expected cost 6.914

Asset capacity factor informed decision expected cost 6.881

Asset cost & capacity factor informed decision expected cost 6.864

Expected cost of best solution identified by PSO 7.03815

Expected value of Partial Perfect Information, costs 0.0283 [0.411%]

Expected value of Partial Perfect Information, capacity factors 0.0608 [0.883%]

Expected value of Perfect Information, costs & capacity factors 0.0774 [1.124%]

Table 5: Summary of cost & capacity uncertainty analysis results
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Figure 8: Summary of renewable generation timeseries uncertainty analysis results
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Generation data year Expected cost of EVP
(£B/yr)

Expected cost of Perfect Information
decision process, PIdp (£B/yr)

2000 6.927 6.670

2001 7.137 6.975

2002 6.884 6.675

2003 7.434 7.101

2004 6.884 6.695

2005 6.884 6.370

2006 7.022 6.955

2007 6.884 6.810

2008 6.884 6.408

2009 6.964 6.895

2010 8.208 7.427

2011 6.884 6.514

2012 6.928 6.874

2013 6.884 6.738

2014 6.884 6.767

2015 6.918 6.573

2016 7.023 6.976

2017 6.884 6.452

2018 6.884 6.884

2019 6.884 6.666

Mean 7.014 6.771

Repeated values correspond to instances in which the EVP solution is feasible and so does not incur any
constraint violation penalty.

Table 6: Summary of renewable generation timeseries uncertainty analysis results
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5.3 Implications for Energy Systems Modelling

This numerical example has demonstrated the capabilities of the uncertainty analysismethod-
ology for LP-based decision problems proposed in Section 4 in its application to the study
of energy systems problems, and the quantification of the impact of underlying uncertain-
ties. The cost of the considered generation asset cost and capacity factor uncertainties was
shown to be of the order 1% of total system cost, and that of renewable generation timeseries
uncertainty, to be approximately 3.5%.

These results motivate more rigorous study of the impacts of uncertainties on the perfor-
mance of state-of-the-art LP based ESOMs, and the need for uncertainty informed models.
Future research effort should be applied to improve upon these initial findings. Such studies
should use data-driven methods for selecting distributions of the underlying system uncer-
tainties, and perform sensitivity analysis to explore the effect of modelling choices on the
results of the VoIA. Further, this form of analysis could be used to study the modelling ben-
efits of including additional data in ESOMs through the use of longer historic time windows,
allowing for the identification of the optimal trade-off between computational cost and solution
performance.

6. Conclusion & Future Works
This work has shown the potential of VoIA as a method for providing insight into the sig-
nificance of underlying uncertainties in energy systems problems, and the importance of
developing uncertainty informed decision models, through its ability to quantify the impact of
uncertainty on the solutions to decision problems in terms of the decision objective. It was
thereby demonstrated that VoIA can be used to support meta decision making tasks within
energy systems, such as the determination of optimal measurement strategies, the targeted
reduction of uncertainties through research or improved sensing, and the identification of
optimal model data usage.

Further, extensions to the classical VoIA framework were presented which greatly in-
crease the diversity of problems to which the method can be applied to analyse the impacts
of uncertainty. Additionally, these extensions allow VoI metrics to be exploited as Uncertainty
Quantification metrics that inform meta decision makers of the ‘performance robustness’ of
different decision processes for a given system, enabling the impacts of uncertainty to be
considered alongside expected performance in their comparison.
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Existing applications of VoIA in the energy systems literature are limited in both their scope
and range of problems considered, and the capabilities of the VoIA framework highlighted
through this work warrant significant further research effort in this area. Further exploration
of the types of energy system problems to which VoIA can be applied is required, to identify
those for which the framework can make contributions to the understanding of the behaviour
of energy systems under the uncertainty imposed by the integration of variable renewable
generation. Some potential applications for future study are proposed in Appendix A.

The extensions to the classical VoIA framework proposed in this piece provide a starting
point for the use of the VoIA methodology to study more complex energy systems decision
problems, and provide improvedmeasures of the impact of uncertainties on practical decision
processes. Future works are required to exploit the potential of these generalisations to pro-
vide insight into how uncertainties affect energy system problem applications, and further de-
velopment of the generalised methodology is required to identify additional capabilities of the
framework. Of particular importance is the investigation of the use of the generalised frame-
work for studying the impacts of uncertainty on Reinforcement Learning based controllers,
as a rigorous methodology for such analysis would allow for the study of far more general
systems, without the requirement for closed form expressions for both the system behaviour
and control scheme. This analysis capability would open up opportunities to perform un-
certainty analyses on blackbox simulation based systems for which only state-action-reward
information is available, which arise in a wide range of Engineering applications. This form of
VoIA generalisation may also enable the assessment of the impact of system and measure-
ment uncertainties on the performance of automated decision processes within Digital Twin
ecosystems. Due to the ability of the VoIA methodology to treat uncertainty in an end-to-end
manner, and quantify its impact on the overall performance of a system, the framework can
be used to analyse the effect of uncertainties on both the isolated performance of an indi-
vidual component within a Digital Twin, and on the performance of complex, interdependent
networks of Digital Twins. Internal interdependencies and resulting uncertainty propagation
are incorporated into the derived uncertainty metric, which can be used to assess the crit-
ical uncertainties with respect to the performance of decision problems within the system,
and the suitability of deterministic Digital Twin models and the corresponding need for the
development of ‘uncertainty informed’ Digital Twins.

The example application of the LP-based decision problem uncertainty analysis method-
ology proposed in Section 4, presented in Section 5, demonstrates the types of uncertainty
analysis that can be performed on state-of-the-art Energy System Optimisation Models, such
as [20–22], using the generalised VoIA methodology. The preliminary results motivate further
research into the critical uncertainties affecting such ESOMs, and the suitability of determin-
istic linear models for identifying low cost future decarbonised energy system designs that are
robust to the underlying certainties affecting their development and operation. Understand-
ing the comparative expected performance of these designs, and those recommended by far

43



6 Conclusion & Future Works

more computationally expensive stochastic energy system optimisation methods, is critical.
This understanding would enable researchers to determine whether existing deterministic lin-
ear models can provide policy makers with reliable energy system design recommendations,
or, whether further research effort is required to develop computationally tractable stochastic
methods for large-scale energy system models. Application of the generalised VoIA method-
ology to high-resolution, full-scale ESOMs, and rigorous analysis of the impacts of the uncer-
tainties associated with energy systems on these models, will be required before definitive
conclusions can be drawn in this regard.
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Appendices

A. Further VoI Applications to Energy System Problems
In this Appendix a series of potential applications of VoIA to energy systems problems are
briefly presented to demonstrate the diversity of problems that can be studied using the
methodology, and the breadth of different insights about uncertainty and measurements that
can be gained from its application.

A.1 VoI for Measurement to Improve Predictions in Power Dispatch
Scheduling

In power dispatch scheduling problems, both the available power generation from renewable
sources and the demanded power in future time instances are uncertain. This uncertainty
affects the performance of look-ahead scheduling algorithms which must base their deci-
sions on uncertain predictive models of the supply and demand powers, as realisations of
power volumes that do not match the implemented schedule lead to mismatches of supply
& demand that are costly to correct through grid-balancing mechanisms (purchasing power
on the spot market is far more costly than correctly predicting requirement and purchasing it
on the day-ahead market).

Measurement of power volumes at a given instance reduce the uncertainty of predicted
values in future time instances, for example through the updating of a Bayesian predictive
distribution. However, deploying real-time telemetry systems across a power network incurs
a significant cost.

VoIA could be applied to compute the expected value of telemetric measurements at
different sampling frequencies for the reduction of uncertainty in predictive distributions for
generation and power powers, for a given scheduling algorithm applied to a power dispatch
optimisation problem. This would allow for the optimal usage of telemetry data for scheduling
to be identified.

Note that the VoI will depend on the state of the power system, i.e. the power levels,
available reserve, etc.. This uncertain state must either be included in the expectation cal-
culation, or the VoI field over the system state could be computed to determine the optimal
measurement frequency for each sub-region of the state space so that a dynamic optimal
sampling frequency can be employed.
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A.2 Determining Optimal Data Usage in Energy Systems Models

As briefly mentioned in Section 5.3, VoIA could be applied to determine the trade-off between
solution ‘performance robustness’ and computational expense for ESMs so that the optimal
data usage can be identified.

Applying more data to ESMs by analysing longer historic operational condition time win-
dows provides the models with more information on the underlying distribution of operational
conditions, and therefore (likely but not provably) allows them to identify system design solu-
tions with improved expected performance. However, the computational complexity of stan-
dard Interior-Point Method LP solvers is O(n3) [117], meaning that computational expense
grows rapidly with the length of time window analysed.

VoIA could be applied to such problems to determine the trade-off between expected
solution performance and computational expense of model evaluation, to allow researchers
to identify the optimal data usage for ESM application studies.

A.3 VoI for Consumer DSR Price-Volume Curves for Grid Operators

Demand-Side Response (DSR) will be a key mechanism for supply-demand power matching
in future high-penetration renewable power systems. Whilst for industrial and retail loads DSR
contracts can be agreed between the load and grid operator, this is unlikely to be feasible for
consumers, who will likely desire more flexibility in their energy usage. Therefore, if consumer
DSR is to be used, there will be significant uncertainty in the consumer demand response to
a given price signal at a given time. This results in uncertainty in the resulting net demand
load for grid operators attempting to use consumer DSR for supply-demand matching in
their dispatch scheduling strategies. As in Section A.1 this uncertainty reduces the expected
performance of scheduling algorithms.

Trials and surveys can be carried out to reduce the uncertainty of consumer DSR price
response curves, the uncertain model mapping DSR market price to demand adjustment,
which will exhibit significant system state dependence. Therefore, VoIA can be used to de-
termine whether such costly trials should be carried out to improve the predictive models
of consumer DSR, or whether prior models obtained from historic data are sufficient for the
purposes of dispatch scheduling.

A.4 VoI for EV Peak Shifting Capacity for Grid Operators

In future power systems it is likely that distribution grid connected EVs will be leveraged as
effective dispatchable power for supply-demand matching, in a similar fashion to consumer
DSR as discussed in Section A.3. However, at any given time the number of EVs available to
provide peak-shifting services in a given distribution region, determining the available power
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capacity, and the state-of-charge of those EVs, determining the available energy capacity,
could be unknown to the grid operator and thus uncertain.

Telemetry systems could be installed to provide grid operators with this EV-based power
dispatch & energy arbitrage capacity information, either for all EV charging points in the dis-
tribution region (giving perfect information), or for some sub-sample of charging points (pro-
viding imperfect information via a Monte Carlo estimate). Therefore, VoIA studies could be
performed to determine whether such telemetry systems are economical for the grid operator,
and if so, the optimal proportion of metered charging points.

Note, similar studies could be performed for domestic battery storage assets if they be-
come significant actors in power distribution systems.

A.5 VoI for Battery Operating Characteristics for Power Support Ser-
vice Provides

Battery systems are commonly used to provide primary and secondary power balancing ser-
vices to improve grid stability. Battery operators looking to provide these services seek to
optimise the scheduling of power dispatch from their storage units to maximise the profitabil-
ity of the assets. This profitability is strongly influenced by the operating characteristics of the
batteries at the time of power dispatch, such as efficiency, state of charge, and self-discharge
rate, andmany of these operational characteristics are impacted by environmental conditions,
particularly ambient temperature. Therefore, due to uncertainties in weather predictions and
battery monitoring system measurements, the operating characteristics of the battery assets
for a given scheduling duration will be uncertain, and as a result there will be uncertainty in
performance of a given scheduling strategy.

VoIA can be used to determine whether deployment and/or improvement of monitoring
systems for battery operating conditions and ambient weather conditions provide a net prof-
itability improvement for power support service providers.
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B. Computational Considerations of VoIA
Whilst VoIA provides important information on the impact of uncertainties on the performance
of decision processes in the context of a given decision problem, this information comes at
a significant computational cost, which limits the scope of tractable decision problems that
can be analysed using the methodology.

For the purposes of this discussion on the computational considerations of VoI calcula-
tions, the stages of the decision process evaluation will be separated so that the solution of
the decision problem is considered as the evaluation of an ‘action model’ (AM) to determine
the action taken by the decision process, followed by the evaluation of a ‘utility model’ (UM)
to determine the utility achieved by that action given a certain realisation of the uncertain
parameters of the system. This distinction is made to allow for a more clear discussion of
the generalised VoIA framework, however it should be noted that for classical, decision tree
based VoIA, evaluation of the AM involves evaluation of the expectation over θ of the UM for
each action in the action space, a ∈ A, and the selection of the expected utility maximising
action from that set, hence the computational cost of AM is|A| times that of the expected UM
calculation, and the UM does not then need to be re-evaluated.

For many practical decision problems, such as the numerical energy systems example
discussed in Section 5, the AM has a significantly higher computational cost than the UM.
However, one of the key advantages of the generalised VoIA framework is that it allows for the
application of simple control schemes to highly complex systems, such as simulation based
models, for which evaluation of the AM has a far lower computational expense than for the
UM.

Considering initially the evaluation of the expected utility of a given action over the uncer-
tain parameter θ via Monte Carlo approximation,

yθ(a) = Eθ
{
u(a, θ)

}
≈ 1

N

N∑
j=1

u
(
a, θ(j)

)
where θ(j) ∼ π(θ) ∀ j (32)

This can be seen to have a computational cost of N times that of the UM, where N is the
number of samples from π(θ) required to achieve an acceptable Monte Carlo approximation
error.

Therefore, determining the EUP of the EVP has a computational cost of,
C(AM) +N ·C(UM), where the function C(·) indicates the computational cost of a model.

Already this simple calculation becomes highly computationally expensive for problems with
large C(UM), such as large-scale simulation based models. Hence for such problems, the
use of VoIA may be constrained to the comparison of EUP for different controller architec-
tures. Though, it should be noted that the N UM evaluations are readily parallelisable.
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For the case of a control scheme which has access to measurement information, a(z, . . .),
its EUP is computed as,

yθ,z
(
a(z, . . .)

)
= Eθ,z

{
u
(
a(z, . . .), θ

)}
= Ez

{
Eθ|z

{
u
(
a(z, . . .), θ

)}}
(33)

The second expression requires the nested evaluation of Monte Carlo approximations,
resulting in a computational expense of N · C(AM) + N2 · C(UM), as for each sample from
π(z) the associated control action must be evaluated as well as a Monte Carlo approximation
of the corresponding expected utility.

However, if the uncertainty model of the system is such that samples from the joint distri-
bution π(θ, z) can be obtained, where the conditional distributions of the joint are the required
posteriors π(θ|z), then a single combined Monte Carlo estimate can be used to approximate
the first expectation expression directly. This reduces the computational cost of evaluating
y
(
a(z, . . .)

)
to N ·

(
C(AM) + C(UM)

)
.

For the case of uncertain measurements,

yθ,z,z′
(
a(z, . . .)

)
= Eθ,z,z′

{
u
(
a(z, . . .), θ

)}
= Ez′

{
Ez|z′

{
Eθ|z

{
u
(
a(z, . . .), θ

)}}}
(34)

which involves three nested layers of Monte Carlo approximations, inducing a computa-
tional cost of N2 ·C(AM) +N3 ·C(UM). Though again, if the necessary joint distribution can
be sampled from, the computational cost can be reduced significantly.

Hence, the computational cost of VoIA analysis can be seen to be vastly greater than
that of a point evaluation via a deterministic form of the decision problem, such as a single
evaluation of the EVP AM and UM, as well as traditional sensitivity and scenario analyses in
which a limited set of point evaluations are made. Further, obtaining Monte Carlo estimates
with appropriate approximation errors often requires large numbers of samples to be taken,
such as N = 1000 used in [59].

Therefore, significant research effort is required to develop techniques for reducing the
computational cost of decision problem model evaluations, improve the efficiency of Monte
Carlo estimation of expected utilities for common problem types, and identify more computa-
tionally efficient EUP evaluation strategies, such as the joint sampling technique discussed
above.
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Appendix C Non-negativity of VoI

Further computational difficulties of the VoIA framework arise in the solution of the Prior
Decision Problem, as discussed in Section 4.2.v). Due to the non-convexity of Stochastic
Optimisation, the determination of the stochastically optimal solution for the Prior Decision
Problemmay be computationally intractable for many practical decision problem applications.
Therefore, the computation of VoI metrics involving y∗ may be infeasible for many problems,
and so require the use of alternative, approximate metrics.

C. Proof of Non-negativity of Value of Information
For a risk neutral decision maker their expected utility of an outcome is equal to the expected
value of that outcome, i.e. they are indifferent between outcomes of equal expected utility
regardless of their associated risks. For the purposes of VoIA, assuming a risk neutral deci-
sion maker allows outcome value and outcome utility to be used interchangeably.

The non-negativity of the Value of Information metrics presented in Section 3.1 follows
directly from the definition of the max operator and the following two inequalities, which result
from the linearity of the expectation operator,

max
a

Eθ
{
f(a, θ)

}
≤ Eθ

{
max
a
f(a, θ)

}
(35)

Eθ
{

max
a
f(a, θ)

}
≤ max

a,θ
f(a, θ) (36)

Starting with the expected utility of the Expected Value Problem (EVP),

ŷ = Eθ

u
(

argmax
a∈A

u(a, θ̄), θ

) ≤ max
a∈A

Eθ
{
u(a, θ)

}
= y∗ (37)

which is the expected utility of the Prior Decision Process, thus demonstrating non-negativity
of the VSS.

Further,

y∗ = max
a∈A

Eθ
{
u(a, θ)

}
= max

a∈A
Ez
{
Eθ|z

{
u(a, θ)

}}
≤ Ez

{
max
a∈A

Eθ|z
{
u(a, θ)

}}
= y∗∗ (38)

which is the expected utility of the Imperfect Information Pre-Posterior decision process,
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thus demonstrating non-negativity of the EVII, and by extension the EVPI, which is a special
case of the EVII, specifically its upper bound. The second equality follows from the applica-
tion of Equation (4), and the inequality from Equation (36).

The inequality,

y∗∗p = Ez
{

max
a∈A

u(a, z)

}
≤ max

θ∈Θ, a∈A
u(a, θ) = ymax (39)

follows readily from the linearity of the expectation operator and the definition of the max

operator, and demonstrates the non-negativity of the Value of Control (VoC) [85].

Therefore, it has been proven that the defined value of information metrics are all non-
negative, and that the expectations given in Table 2 are listed in weakling increasing order,
as shown by Figure 4.

D. Analysis of Incorrect Model Distributions and
Erroneous Measurements

The generalised VoIA framework presented in Section 3.4.i) allows for the impact of inaccu-
rate knowledge of the distributions of the uncertain parameters of the system to be quantified
in terms of the expected utility obtained by the decision maker.

Consider the case in which the decision maker has incorrect knowledge of both the prior
distribution over measurements, z, and the conditional distribution of the system parameters,
θ, given a measurement, assuming them to be πerr

z (z) & πerr
θ|z(θ|z) when the true distributions

are πz(z) & πθ|z(θ|z) respectively.
For the purpose of a BDA the decision maker determines what they consider to be the

stochastically optimal action function, aerr(z) and the corresponding expected utility, yerr, by
solving the Stochastic Optimisation,

aerr(z) = argmax
a∈A

Eθ|z∼πerr
θ|z(θ|z)

{
u(a, θ)

}
(40)

and computing,

yerr = Ez∼πerr
z (z)

{
max
a∈A

Eθ|z∼πerr
θ|z(θ|z)

{
u(a, θ)

}}
(41)

assume for simplicity only one measurement action is available.
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However, this action function will be weakly sub-optimal, and will obtain true expected
utility,

ytrue = Ez∼πz(z)

{
Eθ|z∼πθ|z(θ|z)

{
u(aerr(z), θ)

}}
≤ Ez∼πz(z)

{
max
a∈A

Eθ|z∼πθ|z(θ|z)
{
u(a, θ)

}}
= y∗∗

(42)

This incorrect knowledge of the system parameter distributions therefore results in a re-
duction in the obtained expected utility of the decision maker of ∆err = y∗∗− ytrue. This metric
can be used to quantify the importance of this distributional error on the results of the VoIA
conducted, and hence how sensitive the analysis is to the assumptions surrounding model
distributions.

The effect of erroneous measurements can also be studied using this method, as mea-
surement error can be incorporated into incorrect knowledge of the system measurement
model, f(z|θ). For instance, if the measurements are biased, i.e. z′ = z + δ, then the erro-
neously assumed measurement model is given by,

ferr(z|θ) = f(z + δ|θ) (43)

E. Extensions to VoIA Analysis of LP Based Decision
Problems

E.1 Extension of LP-based VoIA to Action & Constraint Violation Cost
Uncertainty

E.1.i) Uncertain Control Actions

Consider the case in which the action taken by a decision maker is uncertain, and so
when it is attempted to take an action x, the true action implemented is x + γ where γ is a
random variable. This leads to the underlying LP of the system being,

max
x

cT (x+ γ)

s.t. A(x+ γ) ≤ b
(44)
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which is equivalent to,

max
x

cTx+ cTγ

s.t. Ax ≤ b− Aγ
(45)

the objective term cTγ is independent of the action taken, and so can be neglected from
the optimisation, and the uncertain constraint bound can be redefined as b′ = b−Aγ, and the
corresponding probability density function determined. Hence, this action uncertainty can be
re-expressed in standard form and so handled using the framework through the adjusted LP
formulation.

More complex action uncertainties, such as x → x + ∆x, can be incorporated into the
framework in a similar manner, with,

max
x

cT (x+ ∆x)

s.t. A(x+ ∆x) ≤ b
(46)

becoming,

min
x

cT (I + ∆)x

s.t. A(I + ∆)x ≤ b
(47)

The VoI computed when considering such uncertainties could be used to inform decision
makers about the optimal control action precision for a given application through the analysis
of the trade-off between expected system utility performance and control precision cost.

E.1.ii) Uncertain Constraint Violation Penalisation

Incorporation of an uncertain constraint violation penalisation function f(Ax−b, φ), where
φ is a random variable which parameterises the uncertain output of the cost function, is
achieved simply by extending the expectation taken of the utility function to include an ex-
pectation over the uncertain function parameters, φ,

E{u(x, θ)} = Ec,A,b,φ
{
cTx− f

(
max[Ax− b, 0], φ

)}
(48)
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E.2 Two-Stage Linear Programming Based Decision Problems

Consider a linear system with a two-stage decision structure, where the decision variable x
is composed of two vectors, α & β, representing the first and second stage decision variables
respectively.

In the EVP the first stage decision seeks to optimise the linear system over both the first
and second stage decision variables using mean estimates of the system parameter values.
Hence, the first stage EVP is given by the following LP,

max
α,β

ĉT
(
α
β

)
s.t. Â

(
α
β

)
≤ b̂

(49)

which has solution, (α1, β1).

The first stage decision, α1, is then enacted on the system. After which, the true parameter
values of the system are observed, (c, A, b) ∼ π(c, A, b). Subsequently, the second-stage
decision seeks to optimise the linear system subject to the already implemented first-stage
decision, α1, and the realised system parameter values. Therefore, the second-stage EVP
decision could naively be formulated as,

max
β

cT
( α1
β

)
s.t. A

( α1
β

)
≤ b

(50)

However, as the first-stage decision was taken assuming the expected value constraint
set, which differs from the true constraint set of the system, the implemented first-stage action
may result in Equation (50) being ill-defined, leading to there being no feasible second-stage
solution. Therefore, the second-stage decision LPmust be relaxed to account for the potential
for constraint violation through the introduction of a constraint violation parameter γ.

The second-stage LP is therefore given by,

max
β

cT
( α1
β

)
+ f(γ)

s.t. A
( α1
β

)
≤ b+ γ

γ ≥ 0

(51)

where f(·) is the constraint violation cost function. Only for linear constraint violation pe-
nalisation, f(γ) = vTγ, does the second-stage decision problem retain its linearity.
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Appendix E Extensions to VoIA Analysis of LP Based Decision Problems

Equation (51) is solved, with solution denoted β2, to yield the determined solution to the
EVP, which obtains a utility u(α1, β2, θ).

The structure of the two-stage EVP is visualised in Figure 9.

α, β

Â
(
α
β

)
≤ b̂

c, A, b

(c, A, b) ∼ π(θ)
β

A
( α1
β

)
≤ b

U

u (α1, β2, θ)

Figure 9: Decision tree representation of two-stage LP-based decision problem
Adapted from Figure 1 of [59]

The expected utility obtained by the EVP solution is determined using Monte Carlo ap-
proximation as before,

ŷ = Ec,A,b
{
u(α1, β2, θ)

}
≈ 1

N

(∑
j

c(j)

)T( α1
β2

)
−
∑
j

f
(

max
[
A(j)

( α1
β2

)
− b(j), 0

]) (52)

noting that β2 depends on the parameter sample.

When computing the expected utility of the Perfect Information Pre-Posterior decision
process it is noted that the decision problem with Perfect Information collapses to a one-
stage problem. Hence y∗∗p is computed in an identical manner to the one-stage problem, i.e.
via Equation (21) & Equation (22).

Further, the stochastically optimal Prior decision can be determined in a one-stage fash-
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ion, with global optimisation performed over both first and second-stage decision variables
simultaneously.

Therefore, it has been shown that the LP-based decision problem uncertainty analysis
methodology extends readily to two-stage problems, with only the solution strategy of the
EVP needing to be adjusted16.

Within the ESOM context, the first-stage decision variables, α, correspond to the energy
system design decision variables, such as the generation asset portfolio, transmission infras-
tructure, and auxiliary supporting energy infrastructure. Whereas the second-stage decision
variables, β, correspond to operational decision variables, such as power/energy transport
flows, storage power in/outflows, demand-side response volumes, and generation curtail-
ment volumes.

It can be seen from Figure 9 that the two-stage formulation of the LP-based decision
problem is not a true two-stage stochastic decision problem as there is no second uncer-
tainty realisation after the second-stage decision. This formulation decision is made to pro-
vide correspondence between the LP-based decision problem and the perfect operational
foresight formulation of current state-of-the-art ESOMs [20–22]. The methodology can be
readily extended to incorporate an additional uncertainty node, with the second-stage deci-
sion adjusted to use expected parameter values as in the first-stage decision. Additionally,
the methodology can be further extended to model arbitrary n-stage LP-based decision prob-
lems, however motivating applications for such complex Decision System setups are yet to
identified.

E.3 Knapsack Problem Illustrative Example

Application of the proposed LP-based decision problemVoI analysismethodology to a stochas-
tic version of the classic textbook problem called ‘The Knapsack Problem’, as discussed in
References [118] & [119], provides useful intuition and insight into the calculations and rea-
soning behind the method. Visualisation of the EVP feasible region and solution, alongside
those for samples from the uncertain parameter distributions, as performed illustratively in
Figure 6, illuminates the concept of solution constraint violations resulting from uncertainty
in the true constraint set. This tutorial application is left as an exercise for the reader.

16 Note, the EVPIIP computation strategy would also require an adjusted formulation for the two-stage prob-
lem, however this is unlikely to be a desirable analysis to perform as the computation of y∗∗ suffers from similar
issues of non-convexity and resulting computational cost as the determination of y∗
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