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Technical Abstract

Transitioning to fully renewable electricity generation will play a critical role in achieving
substantive reductions in carbon emissions arising from energy usage, and is increasingly
important in light of recent trends towards the electrification of the transportation and heating
sectors. However, integrating renewable generation into modern power systems presents a
number of significant challenges, arising from the uncontrollability, variability, and poor
predictability of many prominent renewable sources. These undesirable supply characteristics
necessitate the widespread usage of auxiliary power system support infrastructure, such as
energy storage & arbitrage, demand-side response, and sector coupling, to support fully
renewable generation, so that system stability, security of supply, and a viable system cost
of provision can be maintained. Due to the uncontrollable, unpredictable nature of wind
and solar generation, the predominant renewable sources in the UK, ensuring instantaneous
supply-demand matching at all times in a high penetration renewable power system requires
some combination of over-capacity of generation and energy storage.

Optimisation techniques will play a key role in facilitating the transition to renewables,
by identifying robust, cost effective system development and operation strategies, thereby
reducing the cost of, and risk associated with, the transition. These optimisation methods
must be highly computationally efficient in order to facilitate the extended simulation durations
required to accurately represent long term system behaviour. Further, they must be able to
appropriately model the localisation effects within the power network, so that the potentially
critical transmission loss information can be incorporated into the development and operational
strategies determined.

However, modern power system optimisation tools [1]–[3] linearise the power network
physics, losing localisation effect information in the process, and limiting their ability to
identify true optimal strategies. In contrast, optimal power flow literature [4]–[10] proposes a
number of formulations which allow for power system operating point optimisation problems
with fully complexity network physics to be solved via a convex optimisation. This work seeks
to adapt such convex formulations to full complexity power system infrastructure development
strategy optimisation problems. This class of problems aims to determine the power system
infrastructure asset configuration which minimises the overall cost of satisfying electricity
demand, and therefore requires the use of system parameters which define the operational
constraints of the network as decision variables. The objectives used embody some aspect of
the overall cost of electricity provision, and are optimised over both the system configuration
and operation strategy. This is distinct from classical optimal power flow problems, which
are concerned only with identifying the optimal operation strategy for a given power system
configuration. The development of a convex formulation for this class of problems would
provide a solution method which accurately represents localisation effects within power
networks, whilst also giving computational efficiency, global optimality, and solution accuracy
guarantees.

The formulation is approached via the extension of the convex optimal power flow
formulations presented by Lavaei & Low [4] and Gayme & Topcu [5] to system development
optimisation. The solution strategy utilises the dual of a convex relaxation of the original
problem, which takes the form of a convex semi-definite program, to solve the optimisation
problem. The global optimum solution can be retrieved from the solution to the dual problem
when the duality gap is zero, i.e. the dual solution is exact, and [4] proves necessary and
sufficient conditions for exactness of the dual solution in the single period case.

This work presents a description of the power system optimisation problem, and the
mathematics of the full complexity network power flow physics. From this, strategies for
problem convexification via the simplification of said physics are discussed, demonstrating
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Technical Abstract

the breadth of potential formulations and their characteristics.
The extension of the SDP relaxation dual formulation to the multi-period problem is derived

and shown to proceed in a similar manner to that in [4], and its convexity is verified by noting
that it retains the SDP form. Further, the conditions for exactness of the dual solution are
proved to extend to the multi-period case. This formulation is found to have a number of
interesting structural properties. Critically, the aggregate Lagrange multiplier dual variables
corresponding to the voltage matrix primal variables are shown to be separable in time. This
provides a basis for the proof of the extended conditions for exactness, and results in the
ability to add any further affine system dynamics without altering the nature of the dual
problem and the associated exactness conditions, as well as a ‘super sparse’ structure of the
dual problem, demonstrated in Fig. 4.

Primal solution recovery strategies for the case in which the exactness conditions are
satisfied, based off that proposed in [5], and the non-exact dual solution case, are presented,
with the attempted recovery in the non-exact case taking the form of a SDP relaxation of a
rank minimisation problem. However, whilst the exact recovery is found to perform well, the
non-exact recovery fails to yield primal approximations which are both feasible and consistent
with the objective in practice.

Numerical experiments performed on a simplified model of the UK transmission level
power system, shown in Fig. 1, utilising renewable generation power data synthesised from
historic meteorological observations [11] and appropriate technology models [12], [13],
novelly demonstrate that the conditions for exactness can be satisfied by the UK power
network topology. As justified in [4], this provides a pathway for obtaining arbitrarily accurate
approximate solutions to the original problem on the network topology for arbitrary power
time series in polynomial time, via the convex ε-modified problem, which achieves zero
duality gap. Further, these experiments demonstrate the formulation’s ability to determine the
global optimum solution in polynomial time, finding the computational complexity in the
observation duration to be O(T 3).

A number of extensions to the model are proposed, which illustrate how the formulation
can be extended to a fully-featured power system optimisation tool, by exploiting the retention
of the conditions for exactness with the addition of further affine system dynamics.

This work demonstrates that optimisation formulations and solution techniques from
optimal power flow literature can be adapted to solve renewable power system optimisation
problems, providing a convex method for solving this class of problems, whilst accounting
for the full complexity power network physics. Such convexity is critical, as it guarantees
global optimality and provides computationally efficient, provably polynomial time, algorithms
for determining said optimal solution. This allows for the development of power system
optimisation tools which more accurately model the localisation effects in power transmission,
and hence provide system development and operational strategies which account for this
potentially critical network effect. These improved strategies help reduce the risk and cost
associated with a transition to fully renewable electricity generation, and thus accelerate
progress towards net zero carbon emissions.

viii



I. INTRODUCTION

In order to achieve substantial reductions in carbon emissions arising from energy usage,
a transition to high proportions of renewable energy generation will be necessary. However,
integrating renewable generation into modern power systems, and ultimately transitioning
to a fully renewable electricity network, whilst maintaining security of supply and viable
system operation cost presents significant challenges. These arise from the uncontrollability,
variability, and poor predictability of many prominent renewable sources. These challenges
are especially prevalent in the UK, which utilises primarily wind and solar generation, both
of which suffer from high magnitude, high frequency variability, and poor predictability
beyond aggregate capacity factors. Potential auxiliary technologies for supporting renewable
generation include energy storage, demand-side response, and sector coupling, which is
especially important in light of recent trends towards the electrification of the transportation
and heating sectors.

In order to ensure security of supply for the consumer, power systems must be designed so
that electricity demand can be satisfied instantaneously at all times. Due to the uncontrollable
nature of wind and solar, achieving supply-demand balancing in a fully renewable grid requires
some combination of over-capacity of generation and energy storage for temporal arbitrage.
Extreme over-capacity results in substantial cost inefficiency due to under-utilisation of energy
generation potential, and hence energy arbitrage may provide a more economical operation
scheme by shifting renewably generated energy in time to match demand.

Optimisation techniques will play a key role in minimising both the cost and energy security
impacts of a transition to renewable energies, through the identification of robust, minimal
cost infrastructure development and operational strategies for transitioning power systems.
These optimisation methods must be highly computationally efficient in order to allow the
solution of problems over the extended simulation durations required to accurately represent
long term system behaviour to be tractable. Further, as grid interconnectivity and diversity
of renewable supply are likely to provide substantial system stability and cost benefits to
future power systems, said optimisation techniques must be able to accurately model the true
behaviour of, and losses associated with, power transmission over long distances, to account
for the critical network localisation effects in system operation strategies.

However, modern power system optimisation tools [1]–[3] do not account for the full
complexity power network physics, instead linearising the power flow equations, losing
potentially crucial information on transmission localisation effects in the process. Optimal
power flow literature [4]–[10] presents a potential pathway to introducing non-linear line
loss information to power systems optimisation problems whilst maintaining the required
computational efficiency, as it provides formulations which convexify power system operating
point optimisation problems, subject to the full complexity network physics. Power systems
optimisation problems aim to determine the power system infrastructure asset configuration
which minimises the overall cost of satisfying electricity demand, and therefore require the
use of system parameters which define the operational constraints of the network as decision
variables. The objectives used embody some aspect of the overall cost of electricity provision,
and are optimised over both the system configuration and operation strategy. This is distinct
from classical optimal power flow problems, which are concerned only with identifying the
optimal operation strategy for a given power system configuration. Adaptation of these convex
formulations to full complexity power system optimisation problems would yield solution
methods for this class of problems which accurately represent localisation effects within
power networks, whilst also giving computational efficiency, global optimality, and solution
accuracy guarantees.
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I Introduction

This work seeks to extend the optimal power flow formulations presented by Lavaei &
Low [4] and Gayme & Topcu [5] to the context of renewable power system development
and operational strategy optimisation. These papers propose a solution strategy by which
the optimal solution to the optimal power flow problem is determined from the dual of a
rank relaxation of the original problem, with both the relaxation and dual taking the form of
convex, semi-definite programs. The optimal solution can be recovered whenever the duality
gap is zero, and necessary and sufficient conditions for such exactness are proved. Further,
these conditions are found to hold widely in practice. This therefore provides a technique for
solving the original, non-convex problem via an equivalent convex problem, with polynomial
time solution algorithms.

Fig. 1: 10 node representation of UK transmission level power system
Interactive version showing location of data sources available here

This report is structured as follows. Section II defines the renewable power system
optimisation and optimal power flow problems, and discusses the variety of solution techniques
proposed in the literature. Section III presents the mathematical description of the power
network physics used in the formulation, and then demonstrates how its manipulation can
yield a number of potential problem convexifications, discussing in each case the merits and
flaws. In Section IV, the SDP relaxation dual formulation is derived, necessary and sufficient
conditions for zero duality gap proved, and the complete solution recovery strategy presented.
Following this, the properties of the dual problem are analysed. Numerical experiments
are performed using a Python-based implementation of the optimisation formulation, and
their results presented in Section V. These experiments apply the optimisation method to a
simplified model of the UK transmission level power system, shown in Fig. 1, over a test time
window, using historic renewable power generation and power demand data. As renewable
energy generation is currently relatively limited in the UK, the power generation profiles
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II Problem Definition II-B OPF Problems

are synthesised from historic meteorological observation data, taken from the MetOffice’s
MIDAS dataset [11], and appropriate technology models, in order to provide a reasonable
representation of diverse future generation assets. The experimentation investigates the
satisfaction of the exactness conditions, and the computational complexity of the proposed
solution method. Finally, Section VI demonstrates how the simplified formulation presented
in the report can be extended to a fully-featured power system optimisation tool, before
concluding remarks are drawn in Section VII.

II. PROBLEM DEFINITION

A. Renewable Power Systems Infrastructure & Operation Optimisation
The fundamental goal of the optimisation method is to use historic power data to identify

joint operational and system development strategies which provide an optimal trade-off
between incurring line losses in transmission, energy wastage due to over-generation, and
under-utilisation of energy storage assets, in order to yield a power system which provides
the minimal overall system cost of satisfying electricity demand with solely renewable sources.

Initially, the problem of storage capacity minimisation will be considered in isolation, before
then extending the optimisation to include both generation asset implementation strategies,
and transmission network development strategies.

Solving this optimisation problem requires the determination of co-optimal system con-
figuration and system operation strategies. The system configuration defines the limits of
behaviour of the power transmission network, and hence the system constraints, whilst the
system operation strategy involves the distribution of power through the network, subject to
the constraints of the system.

Therefore, this problem can be seen to contain a sub-problem of determining the set of
network power flows which optimise the objective, subject to the operating constraints of the
power system. Thus, it is an instance of a class of optimisation problems known as Optimal
Power Flow (OPF) problems.

B. Optimal Power Flow Problems
Optimal power flow problems seek to determine an operating point for a power system

which optimises some operational objective, subject to certain constraints on the network
power flows. The critical set of constraints are those which represent the (potentially
simplified) power transmission physics of the network, with the additional constraint sets
chosen as appropriate for the specific problem under consideration. The full complexity
network physics constraints are non-linear, and result in a highly non-convex problem.

OPF problems have attracted extensive research interest since Carpentier’s seminal work
in 1962 [14], with a broad range of formulations and optimisation techniques proposed in
the literature, seeking to provide accurate and computationally efficient methods for solving
this class of problems. The reviews [15]–[19] provide an overview of the optimisation tech-
niques used in the literature, which include linear programming, Netwon-Raphson, quadratic
programming, interior point methods, Lagrange relaxation, particle swarm optimisation, and
artificial neural networks, amongst others. Many of these methods are based on the Karush-
Kuhn-Tucker (KKT) necessary conditions for constrained optimality, however due to the
non-convexity of the full complexity OPF problem, only local optimality can be guaranteed
by such methods in these cases.

Substantial research effort has recently been directed at developing computationally efficient
solution algorithms with performance guarantees, specifically, a convex formulation of the

3



II Problem Definition II-D Contribution to Literature

OPF problem has been sought. Reference [20] developed a convex OPF problem for radial
power networks in the form of a conic program, however this result was shown not to
hold for general mesh networks [21]. A convex relaxation in the form of a semi-definite
program (SDP) was originally proposed in [22]. Further developments and extensive analyses
were made by Lavaei & Low through [4], [6], [7], resulting in a proof of necessary and
sufficient conditions to guarantee zero duality gap of the SDP relaxation dual solution, and
thus exactness of the SDP relaxation. Further, these conditions were shown to hold widely
in practice, and justification provided [4]. This work therefore provides an equivalent convex
form of the OPF problem, from which the globally optimal operating point can be determined
in a computationally efficient manner, provided the conditions for exactness are satisfied.

Reviews [23] & [24] provide a summary of recent work on convex relaxations of the OPF
problem.

C. Multi-Period Optimal Power Flow with Storage Dynamics

Classical OPF problems consider single period, static instances of power flows through a
network, and optimise over a single set of power and voltage decision variables, assuming
steady-state operation. However, in order to consider the effects of energy storage, the
optimisation must be extended to consider the system operation over multiple time instances,
to allow the arbitrage of energy over time by the storage units.

To do so, a sequence of single period OPF problems are coupled in time via the states of
charge of the storage units in the network by the addition of storage dynamics constraints.
The structure of the resulting mutli-period problem is represented in Fig. 2. Note that only the
state of charge variables couple the OPF problems between adjacent time instances, and it is
this inter-dependence in time that introduces the key aspect of complexity to the multi-period
problem.

OPF 0e0 . . . OPF t−1 OPF t . . . OPF T

e1 et−1 et et+1 eT

Fig. 2: Structure of multi-period OPF problem with storage dynamics

A number of approaches have been taken to solve multi-period optimal power flow
(MOPF) problems in the literature, including linearisation of power flow physics [25],
interior point methods [10], and SDP relaxations [26]. Notably, Gayme & Topcu [5] extend
the work of Lavaei & Low [4], [6], [7] to multiple period problems, demonstrating the
extension of the conditions for exactness of the SDP relaxation dual problem.

D. Contribution to Literature

OPF problems considered in the literature seek to optimise the performance of a given
power system subject to some operational conditions [4], [5], and hence are concerned only
with operational strategy optimisation.

On the other hand, state-of-the-art power system optimisation tools [1]–[3], which do
consider system development strategies, use linearised power flow equations to formulate
the problem as a linear program, and exploit the efficiency of linear solvers. However, in
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III Potential Problem Formulations III-A Bus Injection Model

doing so, potentially critical information about the behaviour of power transmission systems
is lost2, and thus the solutions identified may be sub-optimal.

This work seeks to bridge the gap between these two classes of optimisation problem, by
developing a convex, full complexity, multi-period OPF problem with a combined operational
& development strategy objective. Such a formulation will provide complete, non-linear
network physics information, whilst retaining the computational efficiency necessary for
solving optimisations over long observation horizons, required to provide valid representations
of long-term system operation behaviour, and further provide guarantees on solution accuracy
and global optimality.

III. POTENTIAL PROBLEM FORMULATIONS

As the available historic power system observation data is a set of time series of node
generation and demand powers, which yield net bus power injections, the Bus Injection Model
(BIM) [23] of network power flow is the natural model for the problem formulation.

The BIM describes the full complexity network power physics, and thus defines the
physics constraint set for the optimisation. Additional operational constraints on the power
system, such as line capacity constraints and voltage deviation constraints, are included as
appropriate to the modelling.

A. The Bus Injection Model
Let the power system be modelled by a connected undirected graph G(N ,L), where N =
{n}Nn=1 is the set of nodes, each representing a bus in the network, Cn ⊆ N\n = {k : n→ k}
is the set of nodes connected to node n, and L = {(l,m) : l ∈ N ,m ∈ Cl} is the set of
transmission lines. For each line (i, j) ∈ L, let yij ∈ C be its admittance, and Iij the current
flowing through it from node i to node j. The complex voltage at bus k ∈ N is Vk. Bus 1
is chosen to be the reference bus, and has fixed voltage V1 = Vnom∠0◦, where Vnom is the
nominal bus voltage magnitude. Let sk = (PG,k−PD,k) + j(QG,k−QD,k) be the net complex
power injection (generation minus load) at bus k ∈ N .

The BIM is derived by considering power conservation at each node,

sn︸︷︷︸
net power injection

=
∑
j∈Cn

VnI
H
nj︸ ︷︷ ︸

power outflow

∀ n ∈ N (1)

and applying Ohm’s law for line currents,

Inj = ynj(Vn − Vj) (2)

yielding,

sn =
∑
j∈Cn

yHnjVn

(
V H
n − V H

j

)
∀ n ∈ N (3)

2 See ooooonlineeeee aaaaappppppppppeeeeendddddix for motivating example calculation.
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III Potential Problem Formulations III-C Power Balance Slackness

B. Extension to Multi-Period Bus Injection Model with Storage Dynamics
Multi-period problems consider the operation of a power system over a sequence of time

instances T = {t}Tt=1, with sampling period ∆t. At each time instance, t, the instantaneous
voltage and bus injection sets must define a valid set of line power flows, i.e. satisfy the
physics constraints of the system, (3),

sn
′[t] =

∑
j∈Cn

yHnjVn[t]
(
Vn[t]H − Vj[t]H

)
∀ n ∈ N , t ∈ T (4)

However, introduction of energy storage to the system alters the form of the net bus
injections, sn′[t]. The energy capacity of storage at node n is Sn ≥ 0, which has state of
charge en[t] at time t, and initial charge en[0], introducing the dummy time period t = 0 for
notational simplicity. The power flow into storage at node n, at time t, is taken as,

PE,n[t] =
en[t]− en[t− 1]

∆t
(5)

Note that for simplicity the round-trip efficiency of storage is initially neglected. See Section
VI-B for the relaxation of this assumption.

Reactive power support QS,n[t] is assumed available for grid balancing. This results in,

sn
′[t] =

(
PG,n[t]− PD,n[t]− PE,n[t]

)
+ j
(
QG,n[t]−QD,n[t] +QS,n[t]

)
=

(
PG,n[t]− PD,n[t]− en[t]− en[t− 1]

∆t

)
+ j
(
QG,n[t]−QD,n[t] +QS,n[t]

)
= sn[t]− en[t]− en[t− 1]

∆t
+ jQS,n[t]

(6)

Finally, over the observed duration, the energy levels of storage, en[t], must form a
consistent set and remain valid, i.e. 0 ≤ en[t] ≤ Sn.

Therefore, for the multi-period case, the full complexity physics constraints of the system
are given by,

sn[t]− en[t]− en[t− 1]

∆t
+ jQS,n[t] =

∑
j∈Cn

yHnjVn[t]
(
Vn[t]H − Vj[t]H

)
0 ≤ en[t] ≤ Sn

∀ n ∈ N , t ∈ T

(7)

C. Power Balance Slackness
A key feature which differentiates fully renewable power system analysis from classical

analysis is the requirement for over-capacity of generation within the system to manage the
uncertainty in annual capacity factors, and provide security of supply. As a result, excess
energy is generated, and thus at some time instances generation must be curtailed and the
ability to generate power foregone. This generation curtailment or ‘energy dumping’ results
in the slack power conservation constraint set,

sn
′[t] ≥

∑
j∈Cn

yHnjVn[t]
(
Vn[t]H − Vj[t]H

)
∀ n ∈ N , t ∈ T (8)
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III Potential Problem Formulations III-E Heuristic Flow

These slack power conservation constraints can be shown to be equivalent to the intro-
duction of bounded generation power decision variables, Pmin

G,n[t] ≤ PG,n[t] ≤ Pmax
G,n [t]. The

time varying upper bound corresponds to the power generation potential profile at bus n, i.e.
the maximum available generation power. The lower bound is either Pmin

G,n[t] = −Pd for the
case where active power dumping is available, or Pmin

G,n[t] = 0 otherwise. The single-sided
inequality used in (8) corresponds to Pmin

G,n[t] = −∞, which is reasonable due to the ability
to implement sufficient active power dumping via resistance heating of a wastewater pond,
turn-up demand-side response (DSR), or sector coupling e.g. district heating.

Power slackness is critical, as it converts the non-convex quadratic power conservation
equality constraints to convexifiable quadratic inequality constraints via the implicit
introduction of curtailment decision variables.

D. Linearised Power Flow
State-of-the-art power system optimisation tools [1]–[3] convexify the physics constraints by

neglecting line losses, hence eliminating the only non-linear aspect of the system constraints,
thus converting the problem to a linear program. The linearised slack power conservation
constraints are,

sn
′[t] ≥

∑
j∈Cn

snj[t] ∀ n ∈ N , t ∈ T (9)

where snj[t] is the complex power flowing through line n→ j at time t. Note, some tools
introduce constant line efficiencies [1] to re-introduce some loss information to the problem.

This formulation exploits the computational efficiency of linear programming solvers,
making it well suited for solving large-scale problems. However, for national scale power
systems, line losses may be a critical localisation effect in power transmission, and hence
the removal of this information may result in poor model fit and thus poor solution accuracy.

E. Heuristic Power Flow Convexification
The physics constraints can be convexified whilst retaining the quadratic nature of line

losses through formulation as a convex Quadratically Constrained Quadratic Program (QCQP).
To do so, a heuristic power flow equation is produced via the assumption that bus voltage
deviations from nominal, defined by the reference bus, are negligible. Thus all node bus
voltages are taken to be Vbus∠0◦. Hence in this model, approximate line loss information
is used, but network voltage information is lost. The resulting slack power conservation
constraints are,

sn
′[t] ≥

∑
j∈Cn

(
Vbus(Inj[t]− Ijn[t]) +

∣∣Inj[t]∣∣2 y−1nj ) ∀ n ∈ N , t ∈ T (10)

where Inj is now the positive part of the current flowing from n→ j, and so Inj 6= −Ijn.
This can be seen to be a QCQP by comparison to standard form, and convexity follows

from the non-negativity of admittance, leading to p.s.d. constraint matrices [27], [28],∑
j∈Cn

∣∣Inj∣∣2 y−1nj → IHZnI ≥ 0 =⇒ Zn ≥ 0

This formulation trades off reduced computational efficiency c.f. linearisation with a more
accurate representation of network localisation effects.

7



IV Optimisation Formulation IV-A Formulation Structure

The form of heuristic used is motivated by the recovery of a global power conservation
constraint when summed over all nodes,

∑
n∈N

sn
′[t]︸ ︷︷ ︸

net power in

≥ Vbus

���
���

���
���

�: 0∑
n∈N

∑
j∈Cn

(
Inj[t]− Ijn[t]

)
+
∑
n∈N

∑
j∈Cn

∣∣Inj[t]∣∣2 y−1nj︸ ︷︷ ︸
total network loss

∀t ∈ T (11)

F. Exact SDP Rank Relaxation Dual of Bus Injection Model
References [4] & [5] show that a BIM based, full complexity, classical MOPF problem can

be brought into matrix form and expressed as a semi-definite program (SDP) subject to rank
one constraints on the voltage matrix decision variables. A convex relaxation is produced by
eliminating these rank constraints, and the dual of the SDP relaxation, itself a SDP, can be
solved. Necessary and sufficient conditions for the dual solution to obtain zero duality gap
are proved, and from this exact dual solution the primal solution can be recovered3. Further,
these conditions for exactness are shown to hold widely in practice for real power systems.
Therefore, this formulation provides a convex method for solving full complexity, classical
MOPF problems, provided the exactness conditions are satisfied.

This work develops a formulation of this type for the renewable power system optimisation
problem defined in Section II. This formulation is specified fully in the following Section.

IV. OPTIMISATION FORMULATION AND THEORETICAL RESULTS

A. Formulation Structure
The formulation of the SDP relaxation dual problem and proof of necessary and sufficient

conditions for exactness is structured following that from [4], shown in Fig. 3, defining
Optimisations A through E.

Optimisation A provides the BIM based MOPF problem formulation of the optimisation
problem outlined in Section II. This optimisation is then brought into vectorised form,
formulating it in terms of the node voltage vectors, producing Optimisation B. The vector
terms are then replaced by matrix voltage variables, subject to rank one and positive semi-
definiteness constraints, yielding Optimisation C. The rank one constraints are removed
to produce the convex relaxation problem, Optimisation D. The dual of Optimisation D,
Optimisation E, is then formulated.

The proof of the conditions for exactness proceeds in two stages. Firstly, it is shown
that Optimisations D & E satisfy Slater’s condition [27], and hence that the duality gap
is zero, i.e. Optimisation E is exact w.r.t. Optimisation D. Secondly, it is shown that the
proof of the conditions for exactness on the aggregate Lagrange multiplier dual variables
corresponding to the voltage matrix primal variables extends to the multi-period case, thus
proving necessary and sufficient conditions on the dual solution for the primal, Optimisation
D, to have a set of rank one solution matrices, and hence that the relaxation is exact and
strong duality holds between Optimisations A & E.

3 Whilst conditions for exactness on the primal SDP relaxation are proved, simply the primal solution being rank one,
solutions satisfying these conditions cannot be practically determined [4], and hence the dual problem is used.

8



IV Optimisation Formulation IV-B Mathematical Formulation

Fig. 3: Structure of single period OPF relaxation dual optimisation formulation and proof of
conditions for exactness, Fig. 1 from [4]

B. Mathematical Formulation
The base MOPF problem is defined using the BIM, with the additional application of

line power flow constraints and node voltage deviation constraints, as these are important,
potentially limiting, localisation effects for the operation of power systems. It is further
assumed that active real power dumping is available, and sufficient reactive power support
capacity exists as to be non-limiting (effectively unconstrained).

Initially, for simplicity, the simple aggregate installed storage capacity objective function is
used. The initial states of charge of the storage units are described by the ‘fullness’ parameters
αn, en[0] = αnSn. This parametrisation is necessary as the storage capacities Sn are primal
decision variables, and thus their values are unknown a priori. Hence the provision of absolute
values for the initial states of charge is inappropriate as they cannot be guaranteed to be
consistent with the optimised storage capacities, S∗n, outside the trivial and impractical case
en[0] = 0. Further, for notational simplicity, the sampling frequency of the observed historic
power data is defined, fs = 1/∆t.

Applying the power slack BIM formulation from Section III-C under the above conditions
yields Optimisation A.

9



IV Optimisation Formulation IV-B Mathematical Formulation

Optimisation A:

min
∑
n

Sn (12)

over Sn, en[t], QS,n[t], Vn[t] ∀ n, t

subject to Re

∑
j∈Cn

yHnjVn[t]
(
Vn[t]H − Vj[t]H

) ≤ PG,n[t]− PD,n[t]− fs(en[t]− en[t− 1])

(12a)

Im

∑
j∈Cn

yHnjVn[t]
(
Vn[t]H − Vj[t]H

) ≤ QG,n[t]−QD,n[t] +QS,n[t] (12b)

∣∣∣∣yHlmVl[t](Vl[t]H − Vm[t]H
)∣∣∣∣ ≤ Smax

lm (12c)

V min
n ≤

∣∣Vn[t]
∣∣ ≤ V max

n (12d)

0 ≤ en[t] ≤ Sn (12e)

Sn ≥ 0 (12f)

∀ n ∈ N , (l,m) ∈ L, t ∈ T

The slack power conservation constraints have been separated into their real and imaginary
parts, (12a) and (12b) respectively. The line power flow limits are imposed by constraints on
the line apparent power flow magnitude, (12c). (12d) constrains the node voltage magnitude
deviations, and (12e) and (12f) impose consistency of energy storage operation, via energy
level validity and non-negativity of capacity respectively.

The conversion of Optimisation A into an equivalent rank constrained SDP, Optimisation
B, requires the definition of the following network parameters.

Let V [t] =
[
V1[t], . . . , VN [t]

]T be the vector of complex node voltages. Let Y ∈ CN×N

represent the admittance matrix [4] of the transmission network circuit model, whose (i, j)
entry is given by,

(Y )i,j =

−yij if i 6= j∑
k∈Cl yik otherwise

(13)

where yij is the admittance of line (i, j) as defined in Section III-A. Further, let ȳij be its
complex conjugate.

10



IV Optimisation Formulation IV-B Mathematical Formulation

Denote the standard basis vectors in RN as e1, . . . , eN , and define the following matrices
for all k ∈ N , (i, j) ∈ L, and t ∈ T :

Yk = eke
T
k Y (14a)

Yij = (ȳij + yij)eie
T
i − (yij)eie

T
j (14b)

Yk =
1

2

[
Re{Yk + Y T

k } Im{Y T
k − Yk}

Im{Yk − Y T
k } Re{Yk + Y T

k }

]
(14c)

Yij =
1

2

[
Re{Yij + Y T

ij } Im{Y T
ij − Yij}

Im{Yij − Y T
ij } Re{Yij + Y T

ij }

]
(14d)

Ȳk =
−1

2

[
Im{Yk + Y T

k } Re{Yk − Y T
k }

Re{Y T
k − Yk} Im{Yk + Y T

k }

]
(14e)

Ȳij =
−1

2

[
Im{Yij + Y T

ij } Re{Yij − Y T
ij }

Re{Y T
ij − Yij} Im{Yij + Y T

ij }

]
(14f)

Mk =

[
eke

T
k 0

0 eke
T
k

]
(14g)

Mij =

[
(ei − ej)(ei − ej)T 0

0 (ei − ej)(ei − ej)T
]

(14h)

X[t] =
[
Re{V [t]}T Im{V [t]}T

]T (14i)

Extending Lemma 1 of [4], the following relationships hold for all k ∈ N , (i, j) ∈ L,
and t ∈ T :

Pk,inj[t] = Tr{YkX[t]X[t]T} (15a)

Qk,inj[t] = Tr{ȲkX[t]X[t]T} (15b)

Pij[t] = Tr{YijX[t]X[t]T} (15c)∣∣Sij[t]∣∣2 =
(

Tr{YijX[t]X[t]T}
)2

+
(

Tr{ȲijX[t]X[t]T}
)2

(15d)∣∣Vk[t]∣∣2 = Tr{MkX[t]X[t]T} (15e)∣∣Vi[t]− Vj[t]∣∣2 = Tr{MijX[t]X[t]T} (15f)

Pk,inj[t] and Qk,inj[t] are the real and reactive net injection powers from external sources to
bus k at time t respectively, and are equal to the powers flowing from bus k to the rest of
the network through the lines connected to bus k,

Pk,inj[t] = Pk,out[t] = PG,n[t]− PD,n[t]−
(
en[t]− en[t− 1]

∆t

)
(16a)

Qk,inj[t] = Qk,out[t] = QG,n[t]−QD,n[t] +QS,n[t] (16b)

11
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Applying these expressions to the slack power conservation constraints yields,

Tr{YkX[t]X[t]T} ≤ PG,n[t]− PD,n[t]︸ ︷︷ ︸
data

−
(
en[t]− en[t− 1]

∆t

)
︸ ︷︷ ︸

storage intake

(17a)

Tr{ȲkX[t]X[t]T} ≤ QG,n[t]−QD,n[t]︸ ︷︷ ︸
data

+QS,n[t]︸ ︷︷ ︸
Q support

(17b)

Using the results from (15d), (15e), (17a), (17b), allows Optimisation A to be re-expressed
in vectorised form, as the equivalent Optimisation B.

Optimisation B:

min
∑
n

Sn (18)

over Sn, en[t], QS,n[t],X[t] ∀ n, t

subject to Tr{YnX[t]X[t]T} ≤ PG,n[t]− PD,n[t]− fs(en[t]− en[t− 1]) (18a)

Tr{ȲnX[t]X[t]T} ≤ QG,n[t]−QD,n[t] +QS,n[t] (18b)(
Tr{YlmX[t]X[t]T}

)2
+
(

Tr{ȲlmX[t]X[t]T}
)2
≤ (Smax

lm )2 (18c)

(V min
n )2 ≤ Tr{MnX[t]X[t]T} ≤ (V max

n )2 (18d)

0 ≤ en[t] ≤ Sn (18e)

Sn ≥ 0 (18f)

∀ n ∈ N , (l,m) ∈ L, t ∈ T

Optimisation C is produced by performing a change of variables, converting the
outer-product terms in the voltage vector variables, X[t]X[t]T , to symmetric voltage
matrix variables W [t] subject to rank one and positive semi-definiteness constraints,
rank

(
W [t]

)
= 1, W [t] � 0.

12
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Optimisation C:

min
∑
n

Sn (19)

over Sn, en[t], QS,n[t],W [t] ∀ n, t

subject to Tr{YnW [t]} ≤ PG,n[t]− PD,n[t]− fs(en[t]− en[t− 1]) (19a)

Tr{ȲnW [t]} ≤ QG,n[t]−QD,n[t] +QS,n[t] (19b)(
Tr{YlmW [t]}

)2
+
(
Tr{ȲlmW [t]}

)2 ≤ (Smax
lm )2 (19c)

(V min
n )2 ≤ Tr{MnW [t]} ≤ (V max

n )2 (19d)

0 ≤ en[t] ≤ Sn (19e)

Sn ≥ 0 (19f)

W [t] � 0 (19g)

rank
(
W [t]

)
= 1 (19h)

∀ n ∈ N , (l,m) ∈ L, t ∈ T

Optimisation C is non-convex due to the rank one constraints4, (19h), and line power
constraints, (19c), which are of degree 4 w.r.t. the voltage vector variables X[t]. The line
power constraints can be brought into a linear form w.r.t. the voltage matrix variables W [t]
using Schur’s complement formula [4], [29], allowing the constraints (19c) to be replaced by
the Linear Matrix Inequality (LMI) constraints, −

(
Smax
lm

)2
Tr{YlmW [t]} Tr{ȲlmW [t]}

Tr{YlmW [t]} −1 0
Tr{ȲlmW [t]} 0 −1

 � 0 ∀ t ∈ T (20)

Removing the rank one constraints then yields a SDP, which is a convex problem. The
convex SDP relaxation of the MOPF problem, Optimisation D, is therefore obtained from
Optimisation C by using Schur’s complement formula to replace the line power constraints,
(19c), with the equivalent LMI constraints (20), and the removal of the rank one constraints,
(19h).

4 The set of rank one matrices in non-convex.
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Optimisation D:

min
∑
n

Sn (21)

over Sn, en[t], QS,n[t],W [t] ∀ n, t

subject to Tr{YnW [t]} ≤ PG,n[t]− PD,n[t]− fs(en[t]− en[t− 1]) (21a)

Tr{ȲnW [t]} ≤ QG,n[t]−QD,n[t] +QS,n[t] (21b) −
(
Smax
lm

)2
Tr{YlmW [t]} Tr{ȲlmW [t]}

Tr{YlmW [t]} −1 0
Tr{ȲlmW [t]} 0 −1

 � 0 (21c)

(V min
n )2 ≤ Tr{MnW [t]} ≤ (V max

n )2 (21d)

0 ≤ en[t] ≤ Sn (21e)

Sn ≥ 0 (21f)

W [t] � 0 (21g)

∀ n ∈ N , (l,m) ∈ L, t ∈ T

If the solution to this relaxation satisfies the rank one constraints of the original problem,
then it is also a solution to the original, and therefore the solution obtained from the
relaxation is exact.

The dual problem of Optimisation D, Optimisation E, is formulated by determining the
Lagrangian of Optimisation D, L (x,λ,R,Ω), and then computing the dual cost function,
g(λ,R,Ω), by minimising L w.r.t. the primal decision variables, collectively denoted x,
over the primal feasible region S.

g(λ,R,Ω) = inf
x∈S

L (x,λ,R,Ω) (22)

The dual problem is then the maximisation of the dual cost over the Lagrange multiplier
dual variables, subject to appropriate constraints [27].

To produce the Lagrangian, the following Lagrange multipliers, dual decision variables,
are defined:

1) λPn,t, λ
Q
n,t: Lagrange multipliers associated with the slack real and reactive power

conservations constraints, (21a) & (21b) respectively.

2) λV Un,t , λ
V L
n,t : Lagrange multipliers associated with the upper and lower bound node voltage

deviation constraints, (21d), respectively.

3) λeUn,t, λ
eL
n,t: Lagrange multipliers associated with the upper and lower bound energy storage

level consistency constraints, (21e), respectively.

4) λSn: Lagrange multipliers associated with the non-negativity of storage capacity con-
straints, (21f).
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5) r1(l,m),t, r
2
(l,m),t, . . . , r

6
(l,m),t: The matrices,

R(l,m),t =

r1(l,m),t r2(l,m),t r3(l,m),t

r2(l,m),t r4(l,m),t r5(l,m),t

r3(l,m),t r5(l,m),t r6(l,m),t

 (23)

are the Lagrange multipliers associated with the line power constraint linear matrix
inequalities, (21c).

6) The matrices Ωt ∈ R2N×2N are the Lagrange multipliers associated with the positive
semi-definiteness constraints on the matrix variables W [t], (21g).

LMI constraints of form A � 0, where A is symmetric, have corresponding symmetric
Lagrange multipliers Z � 0, and the constraint violation penalisation terms introduced into
the Lagrangian are Tr{AZ} [27], and hence the corresponding complementary slackness KKT
conditions are Tr{AZ} = 0.

Using the Lagrange multipliers defined above, the Lagrangian of Optimisation D is
produced.

Lagrangian of Optimisation D:

L =
∑
n

Sn

+
∑
n,t

λPn,t
(
Tr{YnW [t]} − PG,n[t] + PD,n[t] + fs(en[t]− en[t− 1])

)
+
∑
n,t

λQn,t
(
Tr{ȲnW [t]} −QG,n[t] +QD,n[t]−QS,n[t]

)
+
∑
(l,m),t

(
−r1(l,m),t(S

max
lm )2 + 2r2(l,m),t Tr{YlmW [t]}+ 2r3(l,m),t Tr{ȲlmW [t]} − r4(l,m),t − r6(l,m),t

)
+
∑
n,t

(
λV Ln,t

(
(V min

n )2 − Tr{MnW [t]}
)

+ λV Un,t
(
Tr{MnW [t]} − (V max

n )2
))

+
∑
n,t

(
−λeLn,ten[t] + λeUn,t(en[t]− Sn)

)
+
∑
n

−λSnSn

+
∑
t

Tr{Ωt(−W [t])}

(24)
requiring,

λPn,t, λ
Q
n,t, λ

V U
n,t , λ

V L
n,t , λ

eU
n,t, λ

eL
n,t ≥ 0 ∀ n ∈ N , t ∈ T (25a)

λSn ≥ 0 ∀ n ∈ N (25b)

R(l,m),t � 0 ∀ (l,m) ∈ L, t ∈ T (25c)

Ωt � 0 ∀ t ∈ T (25d)

and implicitly the satisfaction of the primal constraints, (21a-g).
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Collecting terms yields,

L =
∑
n

(
1− λSn −

∑
t

λeUn,t

)
Sn

+
∑
n,t

(
Tr{λPn,tYnW [t]}+ Tr{λQn,tȲnW [t]} − Tr{λV Ln,tMnW [t]}+ Tr{λV Un,t MnW [t]}

)
+
∑
(l,m),t

(
Tr{2r2(l,m),tYlmW [t]}+ Tr{2r3(l,m),tȲlmW [t]}

)
+
∑
n,t

(
λPn,tfs(en[t]− en[t− 1]) + (λeUn,t − λeLn,t)en[t]

)
−
∑
n,t

(
λQn,tQS,n[t]

)
+
∑
n,t

(
λPn,t(PD,n[t]− PG,n[t]) + λQn,t(QD,n[t]−QG,n[t]) + λV Ln,t (V min

n )2 − λV Un,t (V max
n )2

)
−
∑
(l,m),t

(
r1(l,m),t(S

max
lm )2 + r4(l,m),t + r6(l,m),t

)
−
∑
t

(
Tr{ΩtW [t]}

)
(26)

It is noted that the summation over the terms in the energy storage levels implicitly contains
the initial states of charge via the dummy time instance, en[t = 0], introduced in Section III-B
for notational compactness. However, as previously discussed, said initial charges are defined
relative to the storage capacity primal decision variables Sn, as en[0] = αnSn. Looking ahead
to the minimisation of the Lagrangian, this dependence on Sn is introduced in an elegant way
via the addition of a summation of zero terms, en[0]− αnSn = 0,

L =
∑
n

(
1− λSn −

∑
t

λeUn,t

)
Sn

+
∑
n,t

(
Tr{λPn,tYnW [t]}+ Tr{λQn,tȲnW [t]} − Tr{λV Ln,tMnW [t]}+ Tr{λV Un,t MnW [t]}

)
+
∑
(l,m),t

(
Tr{2r2(l,m),tYlmW [t]}+ Tr{2r3(l,m),tȲlmW [t]}

)
+
∑
n,t

(
λPn,tfs(en[t]− en[t− 1]) + (λeUn,t − λeLn,t)en[t]

)
+
∑
n

(
λPn,1fs(en[0]− αnSn︸ ︷︷ ︸

0

)
)

−
∑
n,t

(
λQn,tQS,n[t]

)
+
∑
n,t

(
λPn,t(PD,n[t]− PG,n[t]) + λQn,t(QD,n[t]−QG,n[t]) + λV Ln,t (V min

n )2 − λV Un,t (V max
n )2

)
−
∑
(l,m),t

(
r1(l,m),t(S

max
lm )2 + r4(l,m),t + r6(l,m),t

)
−
∑
t

(
Tr{ΩtW [t]}

)
(27)
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Rearranging terms gives,

L =
∑
n

(
1− λSn − αnλPn,1fs −

∑
t

λeUn,t

)
Sn

+
∑
n,t

(
Tr{λPn,tYnW [t]}+ Tr{λQn,tȲnW [t]} − Tr{λV Ln,tMnW [t]}+ Tr{λV Un,t MnW [t]}

)
+
∑
(l,m),t

(
Tr{2r2(l,m),tYlmW [t]}+ Tr{2r3(l,m),tȲlmW [t]}

)
+
∑
n,t

(
λPn,tfs(en[t]− en[t− 1]) + (λeUn,t − λeLn,t)en[t]

)
+
∑
n

(
λPn,1fsen[0]

)
−
∑
n,t

(
λQn,tQS,n[t]

)
+
∑
n,t

(
λPn,t(PD,n[t]− PG,n[t]) + λQn,t(QD,n[t]−QG,n[t]) + λV Ln,t (V min

n )2 − λV Un,t (V max
n )2

)
−
∑
(l,m),t

(
r1(l,m),t(S

max
lm )2 + r4(l,m),t + r6(l,m),t

)
−
∑
t

(
Tr{ΩtW [t]}

)
(28)

At which point it is noticed that the remaining part of the introduced summation cancels
with the trailing terms in en[0] in the summation over terms in en[t].
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Finally, the matrix trace terms are brought together by noting that Tr{AX}+ Tr{BX} =
Tr{AX +BX} = Tr{(A+B)X}, resulting in,

L =
∑
n

(
1− λSn − αnλPn,1fs −

∑
t

λeUn,t

)
Sn

+
∑
t

Tr

{(∑
n

(
λPn,tYn + λQn,tȲn − λV Ln,tMn + λV Un,t Mn

)
+
∑
(l,m)

(
2r2(l,m),tYlm + 2r3(l,m),tȲlm

))
W [t]

}

+
∑
n,t

(
λPn,tfs(en[t]− en[t− 1]) + (λeUn,t − λeLn,t)en[t]

)
+
∑
n

(
λPn,1fsen[0]

)
−
∑
n,t

(
λQn,tQS,n[t]

)
+
∑
n,t

(
λPn,t(PD,n[t]− PG,n[t]) + λQn,t(QD,n[t]−QG,n[t]) + λV Ln,t (V min

n )2 − λV Un,t (V max
n )2

)
−
∑
(l,m),t

(
r1(l,m),t(S

max
lm )2 + r4(l,m),t + r6(l,m),t

)
−
∑
t

(
Tr{ΩtW [t]}

)
(29)

Lagrangian Minimisation:
The dual cost function is determined by minimising5 the Lagrangian derived w.r.t. the

primal decisions variables, x = {Sn, en[t], QS,n[t],W [t]}n,t.
For the scalar primal variables {Sn, en[t], QS,n[t]} this is performed by applying first order

conditions to the Lagrangian [5], i.e. the set of stationarity KKT conditions for optimality
[27].

∂L

∂Sn
= 1− λSn − αnλPn,1fs −

∑
t

λeUn,t = 0 ∀ n ∈ N (30a)

∂L

∂en[t]
= fs

(
λPn,t − λPn,t+1

)
+
(
λeUn,t − λeLn,t

)
= 0 ∀ n ∈ N , t ∈ T \T (30b)

∂L

∂en[T ]
= fsλ

P
n,T +

(
λeUn,T − λeLn,T

)
= 0 ∀ n ∈ N (30c)

∂L

∂QS,n[t]
= −λQn,t = 0 ∀ n ∈ N , t ∈ T (30d)

5 Strictly determining the infimum of.
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IV Optimisation Formulation IV-B Mathematical Formulation

The equality λQn,t = 0 is expected, as sufficient reactive power support is assumed at all
nodes, i.e. QS,n[t] is unconstrained, and is un-penalised in the cost function. This causes the
reactive power terms to not act in the optimisation, which can be interpreted as perfect local
power factor correction at all buses in the network. This assumption is relaxed in Section
VI-A, and reactive power information introduced to the optimisation problem.

Minimisation of L w.r.t. the primal matrix variables W [t] relies on the following matrix
trace inequality [30].

For positive semi-definite matrices A,B � 0,

λmin(A) Tr{B} ≤ Tr{AB} ≤ λmax(A) Tr{B} (31)

where λmin(A) , λmax(A) are the minimum and maximum eigenvalues of A respectively.
Noting that for symmetric A,B, all eigenvalues are non-negative.

Therefore, if A,B symmetric and λmin(A) = 0, =⇒ Tr{AB} ≥ 0. Thus Tr{AB} has an
achievable minimum of zero.

Define the following matrices,

A(λ,R, t) =
∑
n

(
λPn,tYn + λQn,tȲn + (λV Un,t − λV Ln,t )Mn

)
+
∑
(l,m)

(
2r2(l,m),tYlm + 2r3(l,m),tȲlm

)
∀ t ∈ T

(32)

Considering the above mathematical result, and noting that as A(λ,R, t) is a sum of
symmetric matrices it is itself symmetric, it can be seen that the terms,

Tr{A(λ,R, t)W [t]} (33a)

Tr{ΩtW [t]} (33b)

can be minimised to zero provided,

A(λ,R, t) � 0 (34a)

λmin
(
A(λ,R, t)

)
= 0 (34b)

λmin(Ωt) = 0 (34c)

as W [t] � 0 under the primal constraints (21g), and Ωt � 0 under the dual constraints (25d).

Thus the terms in L in the primal matrix variables W [t] can be minimised to zero by
appropriate choices of the matrices A(λ,R, t) and Ωt.

As the choice of Ωt � 0 is otherwise unconstrained, this variable is eliminated from the
optimisation in the minimisation of L . In fact Ωt = 0 satisfies the necessary and sufficient
conditions for minimisation of L .

In order for a non-infinite minimum of the trace terms in A(λ,R, t) to exist, specifically
a zero minimum, the following constraints are introduced to the dual problem,
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IV Optimisation Formulation IV-B Mathematical Formulation

∑
n

(
λPn,tYn + λQn,tȲn + (λV Un,t − λV Ln,t )Mn

)
+
∑
(l,m)

(
2r2(l,m),tYlm + 2r3(l,m),tȲlm

)
� 0

∀ t ∈ T
(35)

The necessary conditions λmin
(
A(λ,R, t)

)
= 0 will be shown to be redundant in the proof

of the conditions for exactness, and hence are omitted as constraints.

In light of the minimisations identified, (30) & (33), the dual cost is found to be,

g(λ,R,Ω) = inf
x∈S

L (x,λ,R,Ω)

=
∑
n,t

(
λPn,t(PD,n[t]− PG,n[t]) +

��
���

���
���

�:0

λQn,t(QD,n[t]−QG,n[t]) + λV Ln,t (V min
n )2 − λV Un,t (V max

n )2
)

−
∑
(l,m),t

(
r1(l,m),t(S

max
lm )2 + r4(l,m),t + r6(l,m),t

)
(36)

From this, and the necessary conditions/constraints identified previously, the dual problem,
Optimisation E, is formulated.

Optimisation E - Dual Problem:

max
∑
n,t

(
λPn,t(PD,n[t]− PG,n[t]) + λV Ln,t (V min

n )2 − λV Un,t (V max
n )2

)
(37)

−
∑
(l,m),t

(
r1(l,m),t(S

max
lm )2 + r4(l,m),t + r6(l,m),t

)
over λPn,t, λ

Q
n,t, λ

V U
n,t , λ

V L
n,t , λ

eU
n,t, λ

eL
n,t, λ

S
n, R(l,m),t ∀ n, (l,m), t

subject to 1− λSn − αnλPn,1fs −
∑
t

λeUn,t = 0 (37a)

fs

(
λPn,t − λPn,t+1

)
+
(
λeUn,t − λeLn,t

)
= 0 (37b)

fsλ
P
n,T +

(
λeUn,T − λeLn,T

)
= 0 (37c)∑

n

(
λPn,tYn + (λV Un,t − λV Ln,t )Mn

)
+
∑
(l,m)

(
2r2(l,m),tYlm + 2r3(l,m),tȲlm

)
� 0

(37d)

λPn,t, λ
Q
n,t, λ

V U
n,t , λ

V L
n,t , λ

eU
n,t, λ

eL
n,t, λ

S
n ≥ 0 (37e)

R(l,m),t � 0 (37f)

∀ n ∈ N , (l,m) ∈ L, t ∈ T
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IV Optimisation Formulation IV-C Exactness Conditions

Optimisation E is seen to consist of the maximisation of a linear objective function,
subject to a combination of affine and LMI constraints on the decision variables, and is
therefore a SDP, and thus convex.

C. Proof of Conditions for Exactness
Both Optimisations D & E are convex, hence strong duality can be shown to hold between

them by the satisfaction of the weak form of Slater’s condition [5].

(Weak) Slater’s Condition [27]:
For a convex optimisation problem,

min f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(38)

where f1, . . . , fk are affine. Strong duality holds, d∗ = p∗ , if there exists a partially strictly
feasible solution to the primal problem, that is:

∃ x0 ∈ relint(D) : fi(x0) ≤ 0, i = 1, . . . , k

fi(x0) < 0, i = k+1, . . . ,m

hi(x0) = 0, i = 1, . . . , p

(39)

The following thought experiment details a partially strictly feasible solution to the convex
primal problem, Optimisation D, and by demonstrating satisfaction of Slater’s condition
shows that there is zero duality gap between Optimisations D & E.

Consider each node to have an infinity large storage capacity, i.e. Sn arbitrarily large ∀ n,
which satisfies the primal constraints Sn ≥ 0, (21f). Assume that at all time instances, every
node in the network operates at a constant voltage Ṽn which satisfies V min

n ≤
∣∣Ṽn∣∣ ≤ V max

n .
By consideration of the underlying power transmission physics, no power flow occurs in the
lines =⇒ Tr{YnW [t]} = Tr{ȲnW [t]} = Tr{YlmW [t]} = Tr{ȲlmW [t]} = 0. Therefore,
the primal line power and node voltage constraints, (21c) & (21d), are satisfied, with the
non-affine LMI constraint (21c) being strictly satisfied,−

(
Smax
lm

)2
0 0

0 −1 0
0 0 −1

 = −


((
Smax
lm

)2 − 1
)1/2

0
0



((
Smax
lm

)2 − 1
)1/2

0
0


T

− I ≺ 0 (40)

As W [t] is constructed as a vector outer-product, W [t] = Ṽ Ṽ T ∀ t ∈ T , it is positive
semi-definite, and so (21g) is satisfied.

Let the initial states of charge en[0] < Sn be arbitrarily large. Consider at each time instance
where a real power deficit occurs at a bus, sufficient energy being withdrawn from the local
storage unit as to over-satisfy the demand deficit by an amount ε, which is dumped. At time
instances where a surplus occurs, said surplus is curtailed. This results in the storage energy
levels evolving as,

en[t]− en[t− 1]

∆t
=

{
(PG,n[t]− PD,n[t])− ε for PG,n[t]− PD,n[t] ≤ 0

0 for PG,n[t]− PD,n[t] > 0
(41)
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IV Optimisation Formulation IV-C Exactness Conditions

Under this operation scheme, en[t] is a weakly decreasing series, however, as it starts at an
arbitrarily large energy level, and the time horizon T and power deficits PG,n[t]−PD,n[t] ≤ 0
are finite, en[T ] > 0 is satisfied, as en[0] > (maxt(PD,n[t]) + ε)T ∀ n by construction. As
QS,n[t] is unconstrained, it can be chosen to provide a reactive power surplus in all time
instances. Therefore, the primal real and reactive slack power conservation constraints, (21a)
& (21b), and energy level consistency constraints, (21e), are also strictly satisfied.

As such, a partially strictly feasible solution to the primal problem has been constructed,
and in doing so the weak form of Slater’s condition satisfied.

A strictly feasible solution to the dual problem can be constructed by selecting the values
of the Lagrange multipliers appropriately, following a similar procedure as in [5],

λSn = 1 , λPn,t = 0 , λeUn,t = λeLn,t = 0 , λV Un,t = 2 , λV Ln,t = 1 , R(l,m),t = I (42)

noting that
∑

kMk = I .

Therefore strong duality holds between Optimisation D and Optimisation E.

Extension of Proof of Single Period Condition for Exactness:
Reference [4] proves the following conditions for exactness of the SDP relaxation dual,

“Theorem 2: The following statements hold:

1) The duality gap is zero for Optimization 1 if and only if the SDP Optimization 3 has a
rank-one solution W opt.

2) The duality gap is zero for Optimization 1 if its dual (i.e. the SDP Optimization 4) has
a solution (xopt, ropt) such that the positive semidefinite matrix A(xopt, ropt) has a zero
eigenvalue of multiplicity 2.”

Condition 1) is proved simply by noting that, if the optimal value of the voltage matrix
variable, W opt, is rank one, then the optimal solution to Optimization 3 satisfies the rank
one constraint of Optimization 2. Hence, said optimal solution is in the feasible region of
Optimization 2 and so optimal for the unrelaxed problem, which has been shown to be
equivalent to the original problem.

This condition for exactness is trivial to extend to the multi-period case by noting that, if the
SDP Optimisation D, (21), has an optimal solution which consists of a sequence of rank one
voltage matrices, {W opt[t]}Tt=1, then said optimal solution satisfies the rank one constraints
of the unrelaxed problem Optimisation C, (19). Therefore, it is optimal for the unrelaxed
problem, and thus by the equivalence of Optimisations C & A, is the optimal solution to the
original MOPF problem, Optimisation A, (12).

The proof of Condition 2) in [4] proceeds through the consideration of the following KKT
condition for optimality of Optimization 4,

Tr{A(xopt, ropt)W opt} = 0 (43)

By consideration of this condition, and the positive semi-definiteness of the two matrices,
it is shown that the eigenvectors of W opt corresponding to non-zero eigenvalues all belong
to the null space of A(xopt, ropt). If A(xopt, ropt) has a zero eigenvalue of multiplicity two,
resulting in a null space of dimension two, then non-zero W opt must have f ∈ {1, 2} non-
zero eigenvalues. When f = 1, W opt is rank one, and hence as before the solution to the
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IV Optimisation Formulation IV-D Solution Strategy

dual problem is exact. When f = 2, it can be shown that there exists a rank one solution to
Optimization 3, which is constructed from the vectors spanning the null space of A(xopt, ropt),
and hence this solution to Optimization 3 is exact.

The condition on the dimension of the null space of A for achieving zero duality gap is
extended to the multi-period case, by noting that the procedure for the minimisation of the
Lagrangian of Optimisation D w.r.t. the voltage matrix variables to produce the dual cost,
developed an equivalent set of KKT conditions for optimality of the dual problem solution,

Tr
{
A(λopt,Ropt, t)W opt[t]

}
= 0 ∀ t ∈ T (44)

These KKT conditions are the basis of an analogous proof in reference [5]. It is noted that
all matrices A(λopt,Ropt, t), defined in (32), are composed of independent sets of Lagrange
multipliers, and therefore, the trace KKT conditions must be satisfied independently at all
time instances at the optimal solution.

As the KKT conditions are separable in the time instances, the proof of the existence of a
rank one solution matrix W opt[t] when the corresponding multiplier matrix, A(λopt,Ropt, t),
has a null space of dimension two, can be applied independently to all time instances. Thus,
if all time instances have A-matrices with null spaces of dimension two, then there exists a
sequence of rank one voltage matrices which form a solution to Optimisation D6. Hence, as
before, said solution attains zero duality gap, i.e. is exact.

It is noted that satisfaction of the null space conditions on the A-matrices is sufficient for
satisfaction of the necessary eigenvalue conditions for optimality, (34b).

Therefore, the following equivalent statements for the exactness of the multi-period problem
have been proved:

1) The duality gap is zero for Optimisation A if and only if the SDP Optimisation D has
a solution consisting of a sequence of rank one voltage matrices, {W opt[t]}Tt=1.

2) The duality gap is zero for Optimisation A if its dual (i.e. the SDP Optimisation E) has
a solution (λopt,Ropt) such that the positive semi-definite matrices {A(λopt,Ropt, t)}Tt=1

all have zero eigenvalues of multiplicity 2.
These exactness conditions are both necessary and sufficient [4].

D. Solution Strategy & System Operation Recovery
The proofs in Section IV-C show that, provided the exactness conditions are satisfied, it

is possible to determine the optimal solution to the original MOPF problem, Optimisation
A, from the solution to the convex SDP dual problem, Optimisation E. This section details
the computational procedure required to recover a solution to the original MOPF problem,
initially for exact dual solutions where the necessary and sufficient conditions for zero
duality gap are satisfied, and subsequently for attempts to recover an approximate solution
when said conditions fail.

6 That the optimal solution to the dual problem, Optimisation E, yields an optimal solution to the SDP relaxation,
Optimisation D, follows from exactness of the dual solution. Strong duality between the two problems was proved via the
satisfaction of Slater’s condition.
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IV Optimisation Formulation IV-D Solution Strategy

Solution Recovery Under Exactness Conditions:
Assuming that Optimisation E, (37), is feasible and every feasible solution is non-trivial,

i.e. satisfies W [t] 6= 0, ∀ t ∈ T , and that the optimal solution found when solved satisfies
the exactness conditions outlined above7; the solution to Optimisation A is determined by the
following procedure [5]:

1) Solve Optimisation E and verify that it yields a feasible solution which satisfies the
conditions for exactness.

2) For each t ∈ T :
i) Find any non-zero vector [v1[t]

T v2[t]
T ]T in the null space of A(λopt,Ropt, t), where

v1[t], v2[t] ∈ RN .
ii) Compute the optimal node voltage vector V [t]opt as,

V [t]opt = (ζ1[t] + ζ2[t]j)(v1[t] + v2[t]j) (45)

where the real, scalar constants ζ1[t], ζ2[t] are determined from the complementary
slackness KKT conditions,

λV Ln,t

(
(V min

n )2 −
∣∣Vn[t]opt

∣∣2) = 0 (46a)

λV Un,t

(∣∣Vn[t]opt
∣∣2 − (V max

n )2
)

= 0 (46b)

and the known complex voltage of the reference bus. See Appendix I-A for details
on solving these equations.

iii) Convert the determined V [t]opt to the expanded voltage vector X[t]opt, and from
this compute W [t]opt = X[t]opt(X[t]opt)T

3) Compute the optimal values of the primal decision variables by solving the complemen-
tary slackness KKT conditions,

λPn,t
(
Tr{YnW [t]} − PG,n[t] + PD,n[t] + fs(en[t]− en[t− 1])

)
= 0 (47a)

λQn,t
(
Tr{ȲnW [t]} −QG,n[t] +QD,n[t]−QS,n[t]

)
= 0 (47b)

− λeLn,ten[t] = 0 (47c)

λeUn,t(en[t]− Sn) = 0 (47d)

− λSnSn = 0 (47e)

∀ n ∈ N , t ∈ T

Appendix I-B provides a computationally efficient method of reconstructing {en[t]}n,t
and {Sn}n from these KKT conditions.

The recovered optimal values of the primal decision variables provide complete information
about both the optimal energy storage infrastructure development strategy, {S∗n}Nn=1, and
the optimal system operation strategy, {e∗n[t]}n,t, over the time window T . Additionally,
considering the price interpretation of Lagrange multipliers, the optimal Lagrange multiplier
values provide information on the optimal energy pricing strategies for network operation.

7 Note that this condition can only be verified once the optimal solution to the dual problem, (37), has been determined.
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Primal Domain Solution Recovery for Non-Exact Time Instances:
When the dual problem is solved, and the null space condition on A(λopt,Ropt, t) is found

to not be satisfied by some subset of the time instances in the observation window, for these
time instances the solution recovery procedure from [5] cannot be used, as it requires the null
space to have dimension two in order to derive (45). See proof of Corollary 1 in [4]. Further,
as the conditions for exactness are both necessary and sufficient, this implies that if any time
instance does not satisfy the null space condition, then the duality gap between Optimisations
A & E is non-zero. Additionally, as exactness of the relaxation dual solution requires the
existence of a sequence of rank one optimal voltage matrices, any non-exact solution cannot
satisfy the rank one constraints of Optimisation C, (19h), and thus cannot be feasible w.r.t.
the original problem.

However, the duality gap may be small for such non-exact solutions, and if a primal
domain solution8 can be recovered, it may provide valuable information on near optimal
system development and operation strategies, i.e. an approximate solution to the original
problem, Optimisation A.

The proposed recovery method seeks to identify voltage matrices of minimum rank which
satisfy the enforceable primal domain constraints, and the KKT necessary conditions for
optimality (44). In doing so it is hoped to recover voltage matrices which are primal feasible,
and as close as possible to the exact solution in rank terms. This recovery method therefore
takes the form of an optimisation problem.

The primal domain constraints (21a) & (21b) are not enforceable at the time of voltage
matrix recovery, as the energy levels en[t] are unknown. Therefore the remaining primal
constraints on W [t], (21c) & (21d), are used.

This leads to the recovery optimisation for each non-exact time instance,
t ∈ {T : rank(A(λopt,Ropt, t)) < 2N − 2},

min rank(W [t]) (48)

over W [t]

subject to Tr
{
A(λopt,Ropt, t)W [t]

}
= 0 (48a) −

(
Smax
lm

)2
Tr{YlmW [t]} Tr{ȲlmW [t]}

Tr{YlmW [t]} −1 0
Tr{ȲlmW [t]} 0 −1

 � 0 (48b)

(V min
n )2 ≤ Tr{MnW [t]} ≤ (V max

n )2 (48c)

W [t] � 0 (48d)

∀ n ∈ N , (l,m) ∈ L

However, this optimisation problem is non-convex due to the rank objective, and therefore
intractable to solve - it is known to be NP-hard [31]. To achieve a computationally feasible
recovery method, a convex relaxation of the rank minimisation problem is produced using a
Nuclear-norm objective [31], resulting in the relaxation optimisation,

8 Note, the voltage solution matrices being of rank not equal to one precludes the existence of corresponding voltage
vectors, and hence the solution can only be feasible w.r.t. the domain of Optimisation D.
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min
2N∑
i=1

σi
(
W [t]

)
(49)

over W [t]

subject to Tr
{
A(λopt,Ropt, t)W [t]

}
= 0 (49a) −

(
Smax
lm

)2
Tr{YlmW [t]} Tr{ȲlmW [t]}

Tr{YlmW [t]} −1 0
Tr{ȲlmW [t]} 0 −1

 � 0 (49b)

(V min
n )2 ≤ Tr{MnW [t]} ≤ (V max

n )2 (49c)

W [t] � 0 (49d)

∀ n ∈ N , (l,m) ∈ L

Where σi
(
W [t]

)
is the ith singular value of W [t]. This optimisation can be seen to be a

convex SDP.
Once the voltage matrices W [t] have been recovered, the procedure in Appendix I-B is

then used to recover energy level and storage capacity information, and in doing so construct
the remainder of the primal feasible approximate solution.

E. Problem Characteristics

The optimisation formulation, Section IV-B, and subsequent proof of conditions for
exactness, Section IV-C, demonstrate that an optimal solution to the original MOPF problem,
Optimisation A, can be determined by solving a convex SDP, Optimisation E, provided the
dual solution satisfies the conditions for exactness. There exist efficient algorithms for solving
SDP/LMI problems, which have been shown to have polynomial time complexity [32], and
the convexity of the problem provides both computational and solution accuracy guarantees.
Further, the dual problem of a SDP is itself a SDP, and strong duality often holds [4], [33].
This motivates the formulation employed, as it provides a pathway for solving the NP-hard
original problem [4] in a convex manner, with the dual problem being exact, and exploited to
provide a method for numerically determining rank one solution matrices W [t]. The problem
cannot be solved directly from Optimisation D, as if a rank one solution exists, then infinitely
many rank two solutions exist [4], hence the rank one solution cannot be recovered.

Observing Optimisation E, it can be seen that the optimisation involves N+6NT+12LT →
O((N + L)T ) decision variables, where N is the number of nodes, and L the number of
lines. As power transmission networks are typically very sparse, =⇒ L ≈ N , and thus the
dimension of the problem reduces to O(NT ). Given a fixed network for study, i.e. fixed N ,
the dimension of the problem then only increases linearly with the observation duration T ,
which is an attractive property of the formulation.

As illustrated in Fig. 4, the dual problem has a structure which is ‘super sparse’ in time,
with the constraint sets being almost completely de-coupled between time instances, linked
only to adjacent sets via the real power conservation constraint Lagrange multipliers, λPn,t.
This property of the problem may be able to be exploited by a dedicated solver algorithm
to provide low computational complexity in T , and thus yield an extremely computationally
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Time instance

Objective

Variables

Constraints

λSn

t = 1 t = 2 t = 3 . . .

∑
n,(l,m) . . . +

∑
n,(l,m) . . . +

∑
n,(l,m) . . . + . . .

λPn,1, λ
eU
n,1, . . .

R(l,m),1

λPn,2, λ
eU
n,2, . . .

R(l,m),2

λPn,3, λ
eU
n,3, . . .

R(l,m),3

. . .

A1 � 0

Stationarity KKT
conditions
λ1 ≥ 0

R1 � 0

&

A2 � 0

Stationarity KKT
conditions
λ2 ≥ 0

R3 � 0

&

A3 � 0

Stationarity KKT
conditions
λ3 ≥ 0

R3 � 0

& . . .

λPn,2 λPn,3

. . .

λPn,1

. . .

Fig. 4: Sparse structure of dual problem, Optimisation E, (37)

efficient solution strategy. However, in the network size dimension, N , the problem is ‘dense’,
and hence may scale poorly for large networks, with high computational complexity in N .
This may make the method unsuited to the analysis of large-scale networks, such as the
SciGRID [34] or GridKit [35] European transmission network models commonly used in
literature [1], [36].

Considering the derivation of the aggregate Lagrange multiplier matrices A(λ,R, t)
corresponding to the voltage matrices W [t], given by (32), it can be seen that their value
is unaffected by the addition of energy storage dynamics to the OPF problem. Hence, as
stated in [5], “adding affine charge/discharge dynamics to the OPF problem does not change
the structure of the dual variable that provides the basis for the main result in [4], [6]”.
Indeed, the addition of any further affine dynamics to the MOPF problem does not alter
the structure of the dual variables A(λ,R, t), and retains the conditions for exactness. In
this way, the optimisation can be extended to model any further aspects of power systems
behaviour which can be described by affine constraints, whilst maintaining the convexity
and exactness properties of the formulation.
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V. NUMERICAL RESULTS

A. Experimental Methodology
A Python-based implementation of the solution strategy described in Section IV-D was

developed, code listings for which are available in the ooooonlineeeee aaaaappppppppppeeeeendddddix. The solver libraries
CVXOPT [37], [38] & SCS [39], [40], interfaced via CVXPY [41], [42], were used for solving
the dual problem, (37), and non-exact voltage matrix recovery problem, (49), respectively.

Numerical experiments were carried out to test the validity of the optimisation method
developed. These tests were performed on a simplified model of the UK transmission level
power system [43], shown in Fig. 1, assuming a nominal 400kV bus voltage, and a typical
(25 + j210)mΩ/km line impedance [44], [45]. Hourly power generation data for both wind
and solar at each bus was synthesised from historic meteorological observation data, obtained
from the MetOffice MIDAS dataset [11], and appropriate technology models [12], [13]. Hourly
resolved power demand data was obtained from the GridWatch dataset [46]. The complete
data preparation methodology is available in the ooooonlineeeee aaaaappppppppppeeeeendddddix.

In each test, the dual optimisation was performed for a given time window within the
historic observation period, satisfaction of the conditions for exactness checked for the
solution obtained, and a primal domain solution recovery attempted.

B. Satisfaction of Exactness Conditions
The numerical experiments demonstrated that in many instances the conditions for exactness

of the dual problem were satisfied by the UK power transmission network, and hence that
the optimisation method was able to determine a solution to the original renewable power
system optimisation problem via a convex formulation. Thus, it was demonstrated that the
UK power grid topology is amenable to the studied class of SDP relaxation dual formulations
for MOPF problems.

The importance of this demonstration of exactness is compounded by the result from Section
IV-B of [4], which proves9that, “[For general networks with no reactive-load constraints,]
when the duality gap is zero for a topology Y , then the ε-modified problem corresponding
to every possible [set of] load profiles and physical limits can be convexified”.

The ε-modified problem is the dual problem, (37), subject to the additional constraints,

‖λt‖ ≤
1

ε
, ‖rt‖ ≤

1

ε
, ε ≤ λPn,t ≤

1

ε
∀ n ∈ N , t ∈ T (50)

for some small ε > 0, which corresponds to the dual of a perturbed version of the modified
MOPF problem [4].

This result proves the existence of a reliable method for determining arbitrarily accurate
approximations to MOPF problems on this topology via a convex method, guaranteeing the
determination of the global optimum in polynomial time. The solution is obtained by solving
the convex ε-modified problem, which is both guaranteed to be exact, and shown to achieve
the same solution as the original [4].

Table I and Fig. 5 illustrate the exact solution obtained from the optimisation over the time
window 2018-03-01 9:00 → 2018-03-01 21:00. The solution indicates that, for
operation over this time window, there is a subset of nodes at which it is most beneficial to
locate energy storage. However, as this observation duration is only 12 hours, limited insight
that can be gained into the optimal placement strategy for long-term behaviour of the system,
and the solution is provided for purely illustrative purposes.

9 The extension of the proof to the multi-period case follows from the separability of the matrices A(λ,R, t) in time,
as with the extension of the proof of conditions for exactness.
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V Numerical Results V-C Non-Exact Recovery

Bus, n 1 2 3 4 5 6 7 8 9 10

Sopt
n (MWh) 66,963 392 71,328 9,062 64,902 1,596 450 0 0 9

TABLE I: Optimal bus storage capacities of exact solution to time window
2018-03-01 9:00 → 2018-03-01 21:00

Fig. 5: Recovered energy levels of exact solution to time window
2018-03-01 9:00 → 2018-03-01 21:00

C. Performance of Non-Exact Solution Recovery
During experimentation, it was found that for a number of time windows, the optimal

solution to the dual problem failed to satisfy the conditions for exactness. When the non-
exact voltage matrix recovery method presented in Section IV-D was performed on these time
instances, it achieved rather limited results, with the solutions to the optimisation yielding
either full rank or very high rank matrices, and in some instances violating the positive
semi-definiteness constraints, (49d). Further, the energy level recovery methods described
in Appendix I-B were sometimes found to yield profiles which were either infeasible or
inconsistent with the optimised dual objective.

Tables II & III and Fig. 6 detail the approximate solutions obtained by the two en-
ergy level recovery methods for the non-exact observation period 2018-03-01 9:00
→ 2018-04-01 09:00. It can be seen that the energy levels recovered by the KKT,
complementary slackness based method are infeasible, thus invalidating the corresponding
total storage capacity value, whilst the robust, global consistency method provides a poor fit
to the optimised dual objective.

The results of the experiments suggest that, where the conditions for exactness are not
satisfied, the proposed solution recovery methods cannot provide a good reconstruction of
the near optimal behaviour of the power system, and hence, the approximate solution to the
optimal storage distribution problem can neither be determined nor validated. Thus, a deeper
understanding of the factors determining solution exactness is required for the formulation to
be confidently utilised on arbitrary power profiles.
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V Numerical Results V-C Non-Exact Recovery

Bus, n 1 2 3 4 5 6 7 8 9 10

Sopt
n (GWh)

KKT 75.7 4.2 133.0 10.8 69.6 2.0 0.9 0.2 0.1 0.2
Robust 76.5 11.2 133.0 10.9 80.2 6.0 14.1 89.5 0.2 0.4

TABLE II: Comparison of non-exact recovery method storage capacity estimates

Method Dual objective, d∗ KKT recovery ‘Robust’ recovery∑
n S

opt
n (GWh) 295.4 296.7 422.0

% difference – +0.442 +42.9

TABLE III: Comparison of non-exact recovery method objective values

(a) KKT, complementary slackness based method

(b) Robust, global consistency method

Fig. 6: Comparison of non-exact recovery method energy level estimates
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V Numerical Results V-D Computational Complexity

D. Computational Complexity
Further, timed numerical experiments were performed on time windows of varying

length, starting from the test instance 2018-03-01 9:00, to determine the computational
complexity of the dual problem in the observation duration, T . Fig. 7 plots the average
solution time, over an appropriate number of iterations, for each duration. It shows that
solving the optimisation formulated with CVXOPT has a computational complexity in time
of approximately O(T 3), thereby validating that the formulation provides a polynomial time
method for solving the renewable power system optimisation problem.

However, as discussed in Section IV-E, the dual problem has a ‘super sparse’ nature in
time. Hence, it may be possible to identify a solution algorithm which exploits the sparsity
of the problem, and provides an improved computational complexity, thereby making the
problem more tractable to solve over long observation windows. One such possibility is the
sparse SDP solver algorithm proposed by Madani, Kalbat & Lavaei [47]. The development
of computationally efficient algorithms for solving large, sparse optimisation problems is
an active research area [48]–[50], whose application to this problem may yield substantial
improvements to the solution algorithms.

Fig. 7: Solution time of dual problem, (37), on a Quad-Core Intel i3 @ 3.6 GHz
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VI Model Extensions VI-A Reactive Power

VI. MODEL EXTENSIONS

The optimisation problem formulation in Sections III & IV makes a number of assumptions
to simplify the mathematics presented. This Section details how these simplifications can be
relaxed, and provides further extensions to the model, demonstrating the technique’s ability
to tackle more advance renewable power system optimisation problems than the simple
storage capacity minimisation task initially studied, whilst retaining convexity and exactness
of the dual problem, hence continuing to provide computationally efficient solution methods
and solution accuracy guarantees. Justification of the retention of these properties is provided
in Section IV-E.

A. Reactive Power
As in the initial model reactive power support is assumed unconstrained and available as

required, corresponding to local power factor correction at all buses, this results in reactive
power information being lost from the problem during the Lagrangian minimisation, (30d).
However, reactive power is a significant contributor to line currents, whose limits are a key
localisation effect in network power flow. Hence, the inclusion of reactive power in the model
improves the fit to real world network behaviours.

Traditional, induction machine based industrial power factors are typically internally
corrected to cos(φ) ≈ 0.92 − 0.95 [51], which results in Qload ≈ 1

3
Pload. Therefore, an

approximation of reactive power demand information can be synthesised directly from the
real power demand profile if measured data is unavailable. However, this approximation is
limited as it fails to capture the variation in load power factors resulting from modern, power
electronics based power conditioning systems, which correct power factors close to unity.

Adding constraints on reactive power support of form,

Qmin
S,n ≤ QS,n[t] ≤ Qmax

S,n ∀ t ∈ T (51)

introduces additional Lagrange multipliers, dual variables, λQSUn,t , λQSLn,t to the problem,
corresponding to the upper and lower bounds respectively, which modify the stationarity
KKT conditions (30d) to,

∂L

∂QS,n[t]
= λQSUn,t − λ

QSL
n,t − λ

Q
n,t = 0 ∀ n ∈ N , t ∈ T (52)

and introduce additional terms to the dual cost function, given by,∑
n,t

(
λQSLn,t Qmin

S,n − λ
QSU
n,t Qmax

S,n

)
(53)

Hence it can be seen that this modification introduces reactive power information to the
optimisation.

Additionally, as discussed later in Section VI-C, the reactive power support capacity,
Q̂S,n = Qmax

S,n = −Qmin
S,n , can be introduced as a decision variable, with a corresponding

cost term added to the primal cost function, to allow for optimisation of reactive power
infrastructure implementation strategies.
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VI Model Extensions VI-B Round-Trip Efficiency

B. Round-Trip Efficiency of Storage
Energy storage technologies exhibit a wide range of Round-Trip Efficiencies (RTE) of

storage, with Li-ion batteries achieving 85−98% efficiencies, Pumped-Hydro Energy Storage
(PHES), 65 − 85%, and Compressed Air Energy Storage (CAES), 50−90%, [52]–[54].
Therefore, if significant proportions of total energy usage are arbitraged through storage, the
losses incurred may be a significant factor in the overall efficacy of storage. Hence, including
RTE in the system dynamics allows for this potentially critical effect to be included in system
operation strategy evaluation.

Let ηik, η
o
k, η

d
k(∆t) be the storage intake efficiency, output efficiency, and self-discharge rate

over period ∆t, at bus k, respectively. The RTE is given by ηRTE
k = ηikη

o
k.

The following two relationships are noted,

x ≤ min{a, b} =⇒ x ≤ a & x ≤ b (54a)

x ≤ −max{a, b} =⇒ x ≤ min{−a,−b} (54b)

Including storage inefficiency in the system dynamics requires the storage power in-flow
equation, (5), to be adjusted to,

PE,k[t] =



1

ηik

(
ek[t]− ηdk(∆t) · ek[t− 1]

∆t

)
for intake, PE,k[t] ≥ 0

ηok

(
ek[t]− ηdk(∆t) · ek[t− 1]

∆t

)
for output, PE,k[t] ≤ 0

(55)

As,
0 < ηik, η

o
k ≤ 1 (56)

this implies,

1

ηik

(
ek[t]− ηdk(∆t) · ek[t− 1]

∆t

)
≥ ηok

(
ek[t]− ηdk(∆t) · ek[t− 1]

∆t

)
(57)

Therefore, the power in-flow can be re-expressed as,

PE,k[t] = max

 1

ηik

(
ek[t]− ηdk(∆t) · ek[t− 1]

∆t

)
, ηok

(
ek[t]− ηdk(∆t) · ek[t− 1]

∆t

) (58)

In light of relationships (54a) & (54b), RTE is introduced to the optimisation by the
replacement of the slack real power conservation constraints, (21a), with the pair of constraint
sets,

Tr{YkW [t]} ≤ PG,n[t]− PD,n[t]− 1

ηik

(
ek[t]− ηdk(∆t) · ek[t− 1]

∆t

)
(59a)

Tr{YkW [t]} ≤ PG,n[t]− PD,n[t]− ηok

(
ek[t]− ηdk(∆t) · ek[t− 1]

∆t

)
(59b)
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VI Model Extensions VI-C Operating Costs

This adjustment results in two sets of real power Lagrange multipliers/dual variables
acting in the dual problem, λP,in,t, λ

P,o
n,t , at most one of which is non-zero in any time instance,

as the constraints cannot be binding simultaneously.

C. Full System Operating Costs
As described in Section II, the key aim of the renewable power systems optimisation

problem is to identify strategies which yield the minimal overall system operation cost. To
achieve this, the formulation is extended to include primal decision variables which fully
describe all operational and system development strategies, specifically:

• P̂wind
G,n , installed (real power) wind generation capacities10

• P̂ solar
G,n , installed (real power) solar generation capacities

• {. . .}, generation capacities of other technologies

• Q̂S,n, installed reactive power support capacities

• Sn, installed energy storage capacities

All subject to non-negativity constraints.

In order to introduce the generation capacities as decision variables, the generation power
time series for each renewable source must be decomposed into a rated capacity and a mode
shape,

PG,n[t] =
∑
r

P r
G,n[t]→

∑
r

(
P̃ r
G,n[t]︸ ︷︷ ︸

mode shape

× P̂ r
G,n︸︷︷︸

rated capacity

)
(60)

The objective function is then modified to represent the total cost of system operation per
annum, ∑

n∈N

(
cSSn + cwind

P P̂wind
G,n + csolar

P P̂ solar
G,n + . . .+ cQSQ̂S,n

)
(61)

where the constants cx are the appropriate per unit, per annum, costs of system infrastruc-
ture.

Through this extension, the recovered optimal values of the primal variables provide
complete information about the minimal cost system development and operation strategies
for the renewable power system. Further, the optimal cost, d∗ = p∗, can be used to forecast
the future cost of fully renewable power provision, from which effective economic and
policy strategies can be inferred, for instance carbon pricing.

10 Note, reactive power generation capacity is derived from real power capacity, based off the operational physics of
each technology.
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VI Model Extensions VI-E Combined Generation Systems

D. Network Topology Optimisation
The literature shows that increased grid interconnection can both improve security of supply

in high penetration renewable energy systems [55], and reduce system operation costs [56],
[57]. It is therefore desirable to extend the proposed optimisation to include network bus
connections as decision variables. However, this poses two significant challenges. Firstly, said
decision variables are binary, resulting in a mixed integer program, and making the problem
both non-convex and combinatorially hard [58]. Secondly, relaxation from integer decision
variables still results in a non-convex optimisation, as those relaxed decision variables act in
the network admittance matrix, Y , which then determines the network characteristic matrices
Yn, Ȳn,Ylm, Ȳlm. Hence, the trace terms Tr{YnW [t]}, . . . involve products of two decision
variables. This means that the primal constraints (21a)–(21c) are no longer linear, as they
contain quadratic terms, and hence Optimisation D is no longer a SDP, and no longer convex.

However, considering the topology of electrical transmission networks and their sparsity,
see Fig. 1, and the practical considerations of line transmission line construction, it is likely
that the domain of feasible network configurations will be limited. Therefore, an exhaustive
search, evaluating the extended optimisation from Section VI-C for each configuration, will
likely be tractable, and allow for the optimal network connectivity development strategy to
determined.

The binary connection variables can be extended to non-negative integer variables
representing the number of lines directly connecting each pair of buses. This enables
optimisation over the restricted domain of feasible apparent power line capacities, Smax

lm , to
be performed in a similar manner.

E. Combined Traditional & Renewable Generation Power Systems
Extension to a mixed generation strategy power system including dispatchable Non-

Renewable (NR) generation assets, requires adjustment of the bus power generation term
to,

PG,n[t] =
∑
r

(
P̃ r
G,n[t]P̂ r

G,n

)
+ PNR

G,n[t] (62)

subject to constraints,

0 ≤ PNR
G,n[t] ≤ P̂NR

G,n (63)

where the additional primal variables, PNR
G,n[t] & P̂NR

G,n, are the instantaneous NR generation
power at time t, and NR generation capacity, at node n, respectively.

The following terms are added to the primal cost function,∑
n

cNRP̂
NR
G,n +

∑
n,t

cCO2P
NR
G,n[t]

(
y(∆t)

T

)
(64)

where cNR is the per unit, per annum cost of NR capacity, cCO2 , the carbon price per MWh
of NR electricity generated, and y(∆t), the number of time periods ∆t per year. This form
of cost accounts for both the fixed costs of NR backup generation capacity, and the external,
environmental, costs of its usage, via the carbon pricing term.
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VII Conclusion

VII. CONCLUSION

This work has studied the renewable power system optimisation problem, and investigated
how full complexity power network physics can be introduced to the optimisation whilst
retaining convexity, in order to exploit the computational efficiency, global optimality, and
solution accuracy guarantees it provides. It sought to bridge the gap between existing convex
formulations for solving classical, non-linear MOPF problems, and state-of-the-art, linear
power system optimisation tools, by developing a convex MOPF formulation for renewable
power system infrastructure optimisation. Such a formulation was achieved by extending those
proposed in [4] & [5], expressing the optimisation as a SDP via the dual of a rank relaxation.
Further, necessary and sufficient conditions for zero duality gap, and hence exactness of
the relaxation dual, were proved, thus providing a convex technique for solving the original
MOPF problem. This proof followed from the separability in time of the aggregate Lagrange
multiplier matrices associated with the primal voltage matrix variables. Additionally, these
aggregate Lagrange multipliers, dual variables, were found to be unaltered by the addition
of further affine system dynamics, thus leaving the nature of dual problem unchanged, and
retaining the conditions for exactness. The time separability of the dual variables also led
to the dual problem having a ‘super sparse’ structure, which may be able to be exploited
by a dedicated solver to provide a highly computationally efficient solution method. Via
numerical experiments, it was shown that the exactness conditions were able to be satisfied
by the topology of a simplified model of the UK power transmission network, Fig. 1, and the
implications of this on the ability to obtain arbitrarily accurate approximate solutions via the
ε-modified problem discussed. These experiments also verified the formulation to provide a
polynomial time method for determining the global optimum solution of the MOPF problem,
with the computational complexity in time found to be O(T 3). Finally, it was demonstrated
that the simplified formulation presented can be extended to a fully-featured power system
optimisation tool, whilst retaining its convexity.

Renewable power system optimisation has the ability to provide both substantial reductions
in the overall cost of system operation, and improvements in security of supply, when using
fully renewable electricity generation, via the identification of effective system implementation
and operation strategies. However, modern power system optimisation tools do not account
for full complexity power network physics, of which the non-linear line losses may constitute
a critical localisation effect in large-scale power transmission systems. This work has
demonstrated that convexification techniques from classical OPF literature provide a pathway
for the development of computationally efficient, convex formulations of the full complexity
renewable power system optimisation problem. Further research is required to determine the
circumstances under which the conditions for exactness are satisfied, and whether the sparsity
property of the dual optimisation can be exploited to reduce the computational complexity of
the solution method.
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Appendices

APPENDIX I
TECHNICAL APPENDICES

A. Recovery of Voltage States for Exact Time Instances
The method for recovering the bus voltage states at a time instance, t, which satisfies the

null space condition for exactness, is based on Property 1 from Corollary 1 of [4],

“If the zero-duality-gap condition [is satisfied;] given any nonzero vector [XT
1 X

T
2 ]T in the

null space of A(xopt, ropt), there exist two real-valued scalars ζ1 and ζ2 such that V opt =
(ζ1 + ζ2i)(X1 +X2i) is a global optimum of the OPF problem.”

Extending to the multi-period case, this result applies independently to each time instance
t which satisfies its exactness condition.

Therefore,
V [t]opt = (ζ1[t] + ζ2[t]j)(v1[t] + v2[t]j)

= (ζ1[t]v1[t]− ζ2[t]v2[t]) + (ζ1[t]v2[t] + ζ2[t]v1[t])j
(65)

for any non-zero vector [v1[t]
T v2[t]

T ]T in the null space of A(λopt,Ropt, t).

As the complex voltage of the reference bus, node 1, is known,

V1[t] = Vnom∠0◦ ∀ t ∈ T (66)

Therefore,

Im
{
V [t]opt

{1}

}
= 0 (67)

=⇒ Im
{(

(ζ1[t] + ζ2[t]i)(v1[t] + v2[t]i)
)
{1}

}
= 0 (68)

=⇒ ζ1[t]v2[t]{1} + ζ2[t]v1[t]{1} = 0 (69)

∴ ζ2[t]
2 =

(
v2[t]{1}
v1[t]{1}

)2

ζ1[t]
2 (70)

introducing the notation, u{i} = ui, the ith element of the vector u.

Noting that Tr{MnW [t]} =
∣∣Vn[t]

∣∣2, the complementary slackness KKT conditions
corresponding to primal constraints (21d) become,

λV Ln,t

(
(V min

n )2 −
∣∣Vn[t]opt

∣∣2) = 0 (71a)

λV Un,t

(∣∣Vn[t]opt
∣∣2 − (V max

n )2
)

= 0 (71b)

A node k ∈ N such that max{λV Lk,t , λV Uk,t } > 0 is identified, i.e. a node at which
one of the voltage magnitude constraints is active. The voltage magnitude at this bus
is therefore known via complementary slackness. Let this voltage magnitude squared be
(V b

k )2 ∈ {(V min
k )2, (V max

k )2}.
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Hence, ∣∣Vk[t]opt
∣∣2 =

∣∣ζ1[t] + ζ2[t]j
∣∣2∣∣v1[t]{k} + v2[t]{k}j

∣∣2 = (V b
k )2 (72)

=⇒ ζ1[t]
2 + ζ2[t]

2 =
(V b

k )2

v1[t]2{k} + v2[t]2{k}
(73)

Solving the two linear equations (70) & (73) yields the two scalars ζ1[t], ζ2[t],

ζ1[t] =

√√√√√
1 +

(
v2[t]{1}
v1[t]{1}

)2
−1( (V b

k )2

v1[t]2{k} + v2[t]2{k}

)
(74a)

ζ2(t) = −
v2[t]{1}
v1[t]{1}

ζ1[t] (74b)

Finally, the sign of the vector is altered if required, to ensure that the reference bus has a
positive real voltage, i.e. a phase angle of 0 rather than 180,

V [t]opt = (ζ1[t] + ζ2[t]j)(v1[t] + v2[t]j) · sign(ζ1[t]v1[t]{1} − ζ2[t]v2[t]{1}) (75)

Note that if there does not exist k ∈ N such that max{λV Lk,t , λV Uk,t } > 0, then the node
voltage reconstruction method fails in this time instance.

B. Storage Energy Level Reconstruction
The optimal voltage matrix variables W [t]opt fully define the power flows through the

network during optimal operation of the system over the time window T . From these, the
storage power flows, PE,n[t]opt, are determined, and thus the energy levels, en[t], and storage
capacities, Sn, recovered. Further, as the power flow to/from each bus is calculable, all nodes
can be evaluated independently, as the full network effect is encapsulated by W [t]opt.

The reconstruction strategy involves two stages:
i) An initial pass over some subset of the time window, t ∈ {1, . . . , τ ≤ T}, which tracks

the change in energy level, until a time instance is reached at which the absolute value
of the energy level is known. From the cumulative energy difference, ∆en[τ ], and known
absolute level, en[τ ], the energy capacity Sn is computed.

ii) A secondary pass, which computes the energy levels at each time instance recursively
forwards in time, starting at en[0] = αSn.
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For time instances where λPn,t 6= 0, the real power conservation constraints are known
to be binding. From the complementary slackness KKT conditions corresponding to primal
constraints (21a),

λPn,t
(
Tr{YnW [t]} − PG,n[t] + PD,n[t] + (en[t]− en[t− 1])/∆t

)
= 0 (76)

the following update rule for the storage energy level is derived,

en[t] = en[t− 1]−∆t
(
Tr{YnW [t]}+ (PD,n[t]− PG,n[t])

)
for t : λPn,t 6= 0 (77)

The complementary slackness KKT condition, −λSnSn = 0, corresponding to the non-
negativity of storage capacity primal constraints, (21f), are used to identify nodes n : λSn 6= 0,
for which Sn = 0, in order to save computation.

Complementary Slackness Method:
The main reconstruction method utilises the Lagrange multipliers λeLn,τ , λ

eU
n,τ to identify

known absolute energy levels via the complementary slackness KKT conditions corresponding
to the energy level validity primal constraints, (21e),

−λeLn,ten[t] = 0 (78a)

λeUn,t(en[t]− Sn) = 0 (78b)

The total energy level change from the initial state of charge, ∆en[t], is computed
recursively forwards in time using the update rule (77), until a time instance τ is reached
such that min{λeLn,τ , λeUn,τ} = 0, i.e. one of the constraints is binding.

At this t = τ , the absolute energy level is known,

en[τ ] =

0 if λeLn,τ 6= 0

Sn if λeUn,τ 6= 0
(79)

From this absolute energy level, and the computed relative energy level, the storage capacity
is determined,

Sn =


∣∣∆en[τ ]

∣∣ /αn if λeLn,τ 6= 0∣∣∆en[τ ]
∣∣ /(1− αn) if λeUn,τ 6= 0

(80)

This is valid only for αn 6= 1. For the case αn = 1, a time instance for which λeLn,τ 6= 0 is
sought to compute Sn. Additionally, the case λeLn,τ 6= 0 & λeUn,τ 6= 0 is valid iff Sn = 0.
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This reconstruction method is described by the following algorithm,

Algorithm 1: Complementary slackness based energy level reconstruction
initialisation;
t← 0;
∆e← 0;

first pass;
while λeLn,t = 0 & λeUn,t = 0 do

∆e← ∆e−∆t
(
Tr{YnW [t]}+ (PD,n[t]− PG,n[t])

)
;

t← t+ 1;
end
compute storage capacity;
if λeLn,t 6= 0 then

Sn ←
∣∣∆en[τ ]

∣∣ /αn
else if λeUn,t 6= 0 then

Sn ←
∣∣∆en[τ ]

∣∣ /(1− αn)
end
second pass;
en[0]← αnSn;
for t← 1 to T do

if λPn,t = 0 then
en[t]← en[t− 1]−∆t

(
Tr{YnW [t]}+ (PD,n[t]− PG,n[t])

)
else

raise error;
end

end

Note that time instances for which λPn,t = 0 do not obey the update rule (77). However,
such an occurrence corresponds to the price of real power at that node at that time
instance, represented by λPn,t, being zero. Therefore, by physical considerations, this should
always coincide with λeUn,t 6= 0, as otherwise, the excess real power would be bought by
the storage unit at some non-zero price. Therefore, the update rule can be applied as an
approximation, incurring some potentially small error, and the storage capacity determine
from that approximate energy level.

Global Consistency Method:
Due to the nature of numerical solvers, the identification of ‘zero’ Lagrange multiplier

values can involve large uncertainty. Therefore, an alternative reconstruction method which is
robust to such uncertainty is developed, to provide improved estimates of Sn in said scenarios.

In this method, the full sequence of energy level differences,

{δen[t]}Tt=1 = {en[t]− αnSn}Tt=1

is computed recursively forwards in time in terms of Sn, using the update rule (77).
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From this time series, the storage capacity is determined as,

Sn = max

{∣∣mint(δen[t])
∣∣

αn
,

maxt(δen[t])

1− αn
,
∣∣∣max

t
(δen[t])

∣∣∣+
∣∣∣min

t
(δen[t])

∣∣∣} (81)

for αn 6= 1. For the case αn = 1, the undefined middle option is excluded. This expression
is derived from consideration of the three possible modes of energy level trajectory of the
storage units, shown in Fig. 8:

1) en[t′] = 0 binding for some t′ only
2) en[t′] = Sn binding for some t′ only
3) Both constraints binding over the time window

t

en[t]/δen[t]

0

τ
αnSn

δen[τ ]

t

en[t]/δen[t]

Sn

τ
αnSn

δen[τ ]
t

en[t]/δen[t]

0

T
αnSn

Sn

∆emax
n

Fig. 8: Storage unit energy level trajectory modes

C. Online Appendix
The ooooonlineeeee aaaaappppppppppeeeeendddddix, hosted at http://mal84.user.srcf.net/iib-project/

online-appendices.html, provides details of the data sources, data preparation
methodology, and code listings for the dual optimisation and solution recovery imple-
mentations used in the numerical experiments, as well as some ‘back of the envelope’
calculations which motivate the development of optimisation formulations which account for
full complexity, non-linear line losses. However, it is not submitted formally for consideration
as part of the Master’s project report, and is provided purely as reference material and a host
for interactive figures and code listings.

APPENDIX II
CODE LISTINGS

Code listings for a Python-based implementation of the formulated optimisation and
solution strategies in Section IV, and the definition of the test network used in the numerical
experiments in Section V, are provided in the following files respectively, hosted in the
ooooonlineeeee aaaaappppppppppeeeeendddddix:

A. op code.py

B. test net.py

V

http://mal84.user.srcf.net/iib-project/online-appendices.html
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Appendix IV Risk Assessment Retrospective

APPENDIX III
COVID-19 DISRUPTION

There were no overt disruptions to the work resulting from the COVID-19 pandemic.

APPENDIX IV
RISK ASSESSMENT RETROSPECTIVE

The risk assessment was found to be appropriate, as the necessary ergonomic precautions
were taken, and computer-work related strain injuries were avoided.
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